1 /* 2 * include/asm-alpha/dma.h 3 * 4 * This is essentially the same as the i386 DMA stuff, as 5 * the AlphaPC uses normal EISA dma (but the DMA controller 6 * is not on the EISA bus, but on the local VL82c106 bus). 7 * 8 * These DMA-functions don't know about EISA DMA yet.. 9 */ 10 11 /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $ 12 * linux/include/asm/dma.h: Defines for using and allocating dma channels. 13 * Written by Hennus Bergman, 1992. 14 * High DMA channel support & info by Hannu Savolainen 15 * and John Boyd, Nov. 1992. 16 */ 17 18 #ifndef _ASM_DMA_H 19 #define _ASM_DMA_H 20 21 #include <asm/io.h> /* need byte IO */ 22 23 #define dma_outb outb 24 #define dma_inb inb 25 26 /* 27 * NOTES about DMA transfers: 28 * 29 * controller 1: channels 0-3, byte operations, ports 00-1F 30 * controller 2: channels 4-7, word operations, ports C0-DF 31 * 32 * - ALL registers are 8 bits only, regardless of transfer size 33 * - channel 4 is not used - cascades 1 into 2. 34 * - channels 0-3 are byte - addresses/counts are for physical bytes 35 * - channels 5-7 are word - addresses/counts are for physical words 36 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries 37 * - transfer count loaded to registers is 1 less than actual count 38 * - controller 2 offsets are all even (2x offsets for controller 1) 39 * - page registers for 5-7 don't use data bit 0, represent 128K pages 40 * - page registers for 0-3 use bit 0, represent 64K pages 41 * 42 * DMA transfers are limited to the lower 16MB of _physical_ memory. 43 * Note that addresses loaded into registers must be _physical_ addresses, 44 * not logical addresses (which may differ if paging is active). 45 * 46 * Address mapping for channels 0-3: 47 * 48 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) 49 * | ... | | ... | | ... | 50 * | ... | | ... | | ... | 51 * | ... | | ... | | ... | 52 * P7 ... P0 A7 ... A0 A7 ... A0 53 * | Page | Addr MSB | Addr LSB | (DMA registers) 54 * 55 * Address mapping for channels 5-7: 56 * 57 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) 58 * | ... | \ \ ... \ \ \ ... \ \ 59 * | ... | \ \ ... \ \ \ ... \ (not used) 60 * | ... | \ \ ... \ \ \ ... \ 61 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 62 * | Page | Addr MSB | Addr LSB | (DMA registers) 63 * 64 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses 65 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at 66 * the hardware level, so odd-byte transfers aren't possible). 67 * 68 * Transfer count (_not # bytes_) is limited to 64K, represented as actual 69 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, 70 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 71 * 72 */ 73 74 #define MAX_DMA_CHANNELS 8 75 76 /* The maximum address that we can perform a DMA transfer to on this platform */ 77 #define MAX_DMA_ADDRESS 0x1000000 78 79 /* 8237 DMA controllers */ 80 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ 81 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ 82 83 /* DMA controller registers */ 84 #define DMA1_CMD_REG 0x08 /* command register (w) */ 85 #define DMA1_STAT_REG 0x08 /* status register (r) */ 86 #define DMA1_REQ_REG 0x09 /* request register (w) */ 87 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ 88 #define DMA1_MODE_REG 0x0B /* mode register (w) */ 89 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ 90 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ 91 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */ 92 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ 93 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ 94 95 #define DMA2_CMD_REG 0xD0 /* command register (w) */ 96 #define DMA2_STAT_REG 0xD0 /* status register (r) */ 97 #define DMA2_REQ_REG 0xD2 /* request register (w) */ 98 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ 99 #define DMA2_MODE_REG 0xD6 /* mode register (w) */ 100 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ 101 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ 102 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */ 103 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ 104 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ 105 106 #define DMA_ADDR_0 0x00 /* DMA address registers */ 107 #define DMA_ADDR_1 0x02 108 #define DMA_ADDR_2 0x04 109 #define DMA_ADDR_3 0x06 110 #define DMA_ADDR_4 0xC0 111 #define DMA_ADDR_5 0xC4 112 #define DMA_ADDR_6 0xC8 113 #define DMA_ADDR_7 0xCC 114 115 #define DMA_CNT_0 0x01 /* DMA count registers */ 116 #define DMA_CNT_1 0x03 117 #define DMA_CNT_2 0x05 118 #define DMA_CNT_3 0x07 119 #define DMA_CNT_4 0xC2 120 #define DMA_CNT_5 0xC6 121 #define DMA_CNT_6 0xCA 122 #define DMA_CNT_7 0xCE 123 124 #define DMA_PAGE_0 0x87 /* DMA page registers */ 125 #define DMA_PAGE_1 0x83 126 #define DMA_PAGE_2 0x81 127 #define DMA_PAGE_3 0x82 128 #define DMA_PAGE_5 0x8B 129 #define DMA_PAGE_6 0x89 130 #define DMA_PAGE_7 0x8A 131 132 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ 133 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ 134 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ 135 136 /* enable/disable a specific DMA channel */ 137 static __inline__ void enable_dma(unsigned int dmanr) /* */ 138 { 139 if (dmanr<=3) 140 dma_outb(dmanr, DMA1_MASK_REG); 141 else 142 dma_outb(dmanr & 3, DMA2_MASK_REG); 143 } 144 145 static __inline__ void disable_dma(unsigned int dmanr) /* */ 146 { 147 if (dmanr<=3) 148 dma_outb(dmanr | 4, DMA1_MASK_REG); 149 else 150 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); 151 } 152 153 /* Clear the 'DMA Pointer Flip Flop'. 154 * Write 0 for LSB/MSB, 1 for MSB/LSB access. 155 * Use this once to initialize the FF to a known state. 156 * After that, keep track of it. :-) 157 * --- In order to do that, the DMA routines below should --- 158 * --- only be used while interrupts are disabled! --- 159 */ 160 static __inline__ void clear_dma_ff(unsigned int dmanr) /* */ 161 { 162 if (dmanr<=3) 163 dma_outb(0, DMA1_CLEAR_FF_REG); 164 else 165 dma_outb(0, DMA2_CLEAR_FF_REG); 166 } 167 168 /* set mode (above) for a specific DMA channel */ 169 static __inline__ void set_dma_mode(unsigned int dmanr, char mode) /* */ 170 { 171 if (dmanr<=3) 172 dma_outb(mode | dmanr, DMA1_MODE_REG); 173 else 174 dma_outb(mode | (dmanr&3), DMA2_MODE_REG); 175 } 176 177 /* Set only the page register bits of the transfer address. 178 * This is used for successive transfers when we know the contents of 179 * the lower 16 bits of the DMA current address register, but a 64k boundary 180 * may have been crossed. 181 */ 182 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr) /* */ 183 { 184 switch(dmanr) { 185 case 0: 186 dma_outb(pagenr, DMA_PAGE_0); 187 break; 188 case 1: 189 dma_outb(pagenr, DMA_PAGE_1); 190 break; 191 case 2: 192 dma_outb(pagenr, DMA_PAGE_2); 193 break; 194 case 3: 195 dma_outb(pagenr, DMA_PAGE_3); 196 break; 197 case 5: 198 dma_outb(pagenr & 0xfe, DMA_PAGE_5); 199 break; 200 case 6: 201 dma_outb(pagenr & 0xfe, DMA_PAGE_6); 202 break; 203 case 7: 204 dma_outb(pagenr & 0xfe, DMA_PAGE_7); 205 break; 206 } 207 } 208 209 210 /* Set transfer address & page bits for specific DMA channel. 211 * Assumes dma flipflop is clear. 212 */ 213 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) /* */ 214 { 215 set_dma_page(dmanr, a>>16); 216 if (dmanr <= 3) { 217 dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 218 dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 219 } else { 220 dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 221 dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 222 } 223 } 224 225 226 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for 227 * a specific DMA channel. 228 * You must ensure the parameters are valid. 229 * NOTE: from a manual: "the number of transfers is one more 230 * than the initial word count"! This is taken into account. 231 * Assumes dma flip-flop is clear. 232 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. 233 */ 234 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) /* */ 235 { 236 count--; 237 if (dmanr <= 3) { 238 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 239 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 240 } else { 241 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 242 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 243 } 244 } 245 246 247 /* Get DMA residue count. After a DMA transfer, this 248 * should return zero. Reading this while a DMA transfer is 249 * still in progress will return unpredictable results. 250 * If called before the channel has been used, it may return 1. 251 * Otherwise, it returns the number of _bytes_ left to transfer. 252 * 253 * Assumes DMA flip-flop is clear. 254 */ 255 static __inline__ int get_dma_residue(unsigned int dmanr) /* */ 256 { 257 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE 258 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE; 259 260 /* using short to get 16-bit wrap around */ 261 unsigned short count; 262 263 count = 1 + dma_inb(io_port); 264 count += dma_inb(io_port) << 8; 265 266 return (dmanr<=3)? count : (count<<1); 267 } 268 269 270 /* These are in kernel/dma.c: */ 271 extern int request_dma(unsigned int dmanr, char * device_id); /* reserve a DMA channel */ 272 extern void free_dma(unsigned int dmanr); /* release it again */ 273 274 275 #endif /* _ASM_DMA_H */