taglinefilesource code
accumulator57arch/i386/math-emu/poly_2xm1.cXsig                   accumulator, Denom, argSignif;
accumulator101arch/i386/math-emu/poly_2xm1.caccumulator.lsw = accumulator.midw = accumulator.msw = 0;
accumulator102arch/i386/math-emu/poly_2xm1.cpolynomial_Xsig(&accumulator, &Xll, lterms, HIPOWER-1);
accumulator103arch/i386/math-emu/poly_2xm1.cmul_Xsig_Xsig(&accumulator, &argSignif);
accumulator104arch/i386/math-emu/poly_2xm1.cshr_Xsig(&accumulator, 3);
accumulator107arch/i386/math-emu/poly_2xm1.cadd_two_Xsig(&accumulator, &argSignif, &exponent);
accumulator114arch/i386/math-emu/poly_2xm1.cshr_Xsig(&accumulator, - exponent);
accumulator115arch/i386/math-emu/poly_2xm1.caccumulator.msw |= 0x80000000;      /* add 1.0 */
accumulator116arch/i386/math-emu/poly_2xm1.cmul_Xsig_Xsig(&accumulator, shiftterm[shift]);
accumulator117arch/i386/math-emu/poly_2xm1.caccumulator.msw &= 0x3fffffff;      /* subtract 1.0 */
accumulator126arch/i386/math-emu/poly_2xm1.cDenom.lsw = accumulator.lsw;
accumulator127arch/i386/math-emu/poly_2xm1.cXSIG_LL(Denom) = XSIG_LL(accumulator);
accumulator139arch/i386/math-emu/poly_2xm1.cdiv_Xsig(&accumulator, &Denom, &accumulator);
accumulator143arch/i386/math-emu/poly_2xm1.cexponent += round_Xsig(&accumulator);
accumulator145arch/i386/math-emu/poly_2xm1.csignificand(result) = XSIG_LL(accumulator);
accumulator59arch/i386/math-emu/poly_atan.cXsig                  accumulator, Numer, Denom, accumulatore, argSignif,
accumulator142arch/i386/math-emu/poly_atan.caccumulator.msw = accumulator.midw = accumulator.lsw = 0;
accumulator143arch/i386/math-emu/poly_atan.cpolynomial_Xsig(&accumulator, &XSIG_LL(argSqSq),
accumulator145arch/i386/math-emu/poly_atan.cmul64_Xsig(&accumulator, &XSIG_LL(argSq));
accumulator146arch/i386/math-emu/poly_atan.cnegate_Xsig(&accumulator);
accumulator147arch/i386/math-emu/poly_atan.cpolynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddnegterms, HIPOWERon-1);
accumulator148arch/i386/math-emu/poly_atan.cnegate_Xsig(&accumulator);
accumulator149arch/i386/math-emu/poly_atan.cadd_two_Xsig(&accumulator, &fixedpterm, &dummy_exp);
accumulator155arch/i386/math-emu/poly_atan.cdiv_Xsig(&accumulator, &accumulatore, &accumulator);
accumulator157arch/i386/math-emu/poly_atan.cmul_Xsig_Xsig(&accumulator, &argSignif);
accumulator158arch/i386/math-emu/poly_atan.cmul_Xsig_Xsig(&accumulator, &argSq);
accumulator160arch/i386/math-emu/poly_atan.cshr_Xsig(&accumulator, 3);
accumulator161arch/i386/math-emu/poly_atan.cnegate_Xsig(&accumulator);
accumulator162arch/i386/math-emu/poly_atan.cadd_Xsig_Xsig(&accumulator, &argSignif);
accumulator167arch/i386/math-emu/poly_atan.cshr_Xsig(&accumulator, -1-exponent);
accumulator168arch/i386/math-emu/poly_atan.cnegate_Xsig(&accumulator);
accumulator169arch/i386/math-emu/poly_atan.cadd_Xsig_Xsig(&accumulator, &pi_signif);
accumulator176arch/i386/math-emu/poly_atan.cshr_Xsig(&accumulator, -exponent);
accumulator177arch/i386/math-emu/poly_atan.cnegate_Xsig(&accumulator);
accumulator178arch/i386/math-emu/poly_atan.cadd_Xsig_Xsig(&accumulator, &pi_signif);
accumulator185arch/i386/math-emu/poly_atan.cshr_Xsig(&accumulator, 1 - exponent);
accumulator186arch/i386/math-emu/poly_atan.cnegate_Xsig(&accumulator);
accumulator187arch/i386/math-emu/poly_atan.cadd_Xsig_Xsig(&accumulator, &pi_signif);
accumulator191arch/i386/math-emu/poly_atan.cexponent += round_Xsig(&accumulator);
accumulator192arch/i386/math-emu/poly_atan.csignificand(result) = XSIG_LL(accumulator);
accumulator32arch/i386/math-emu/poly_l2.cXsig                 accumulator, expon_accum, yaccum;
accumulator64arch/i386/math-emu/poly_l2.caccumulator.msw = accumulator.midw = accumulator.lsw = 0;
accumulator68arch/i386/math-emu/poly_l2.clog2_kernel(&x, &accumulator, &expon);
accumulator77arch/i386/math-emu/poly_l2.cshr_Xsig(&accumulator, expon_expon - expon);
accumulator80arch/i386/math-emu/poly_l2.cnegate_Xsig(&accumulator);
accumulator81arch/i386/math-emu/poly_l2.cadd_Xsig_Xsig(&accumulator, &expon_accum);
accumulator90arch/i386/math-emu/poly_l2.cmul_Xsig_Xsig(&accumulator, &yaccum);
accumulator92arch/i386/math-emu/poly_l2.cexpon_expon += round_Xsig(&accumulator);
accumulator94arch/i386/math-emu/poly_l2.cif ( accumulator.msw == 0 )
accumulator101arch/i386/math-emu/poly_l2.csignificand(result) = XSIG_LL(accumulator);
accumulator118arch/i386/math-emu/poly_l2.cXsig                 accumulator, yaccum;
accumulator125arch/i386/math-emu/poly_l2.clog2_kernel(arg, &accumulator, &exponent);
accumulator129arch/i386/math-emu/poly_l2.cmul_Xsig_Xsig(&accumulator, &yaccum);
accumulator131arch/i386/math-emu/poly_l2.cexponent += round_Xsig(&accumulator);
accumulator134arch/i386/math-emu/poly_l2.csignificand(result) = XSIG_LL(accumulator);
accumulator189arch/i386/math-emu/poly_l2.cXsig                 accumulator, Numer, Denom, argSignif, arg_signif;
accumulator233arch/i386/math-emu/poly_l2.caccumulator.lsw = argSignif.lsw; XSIG_LL(accumulator) = XSIG_LL(argSignif);
accumulator234arch/i386/math-emu/poly_l2.cmul_Xsig_Xsig(&accumulator, &accumulator);
accumulator235arch/i386/math-emu/poly_l2.cshr_Xsig(&accumulator, 2*(-1 - (1 + exponent + adj)));
accumulator236arch/i386/math-emu/poly_l2.cXsq = XSIG_LL(accumulator);
accumulator237arch/i386/math-emu/poly_l2.cif ( accumulator.lsw & 0x80000000 )
accumulator240arch/i386/math-emu/poly_l2.caccumulator.msw = accumulator.midw = accumulator.lsw = 0;
accumulator242arch/i386/math-emu/poly_l2.cpolynomial_Xsig(&accumulator, &Xsq, logterms, HIPOWER-1);
accumulator244arch/i386/math-emu/poly_l2.cmul_Xsig_Xsig(&accumulator, &argSignif);
accumulator245arch/i386/math-emu/poly_l2.cshr_Xsig(&accumulator, 6 - adj);
accumulator248arch/i386/math-emu/poly_l2.cadd_two_Xsig(&accumulator, &arg_signif, &exponent);
accumulator251arch/i386/math-emu/poly_l2.caccum_result->lsw = accumulator.lsw;
accumulator252arch/i386/math-emu/poly_l2.caccum_result->midw = accumulator.midw;
accumulator253arch/i386/math-emu/poly_l2.caccum_result->msw = accumulator.msw;
accumulator68arch/i386/math-emu/poly_sin.cXsig                accumulator, argSqrd, argTo4;
accumulator84arch/i386/math-emu/poly_sin.caccumulator.lsw = accumulator.midw = accumulator.msw = 0;
accumulator99arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
accumulator101arch/i386/math-emu/poly_sin.cmul_Xsig_Xsig(&accumulator, &argSqrd);
accumulator102arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator104arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
accumulator107arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, 2);    /* Divide by four */
accumulator108arch/i386/math-emu/poly_sin.caccumulator.msw |= 0x80000000;  /* Add 1.0 */
accumulator110arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &significand(arg));
accumulator111arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &significand(arg));
accumulator112arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &significand(arg));
accumulator118arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, arg->exp - exponent);
accumulator120arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator121arch/i386/math-emu/poly_sin.cXSIG_LL(accumulator) += significand(arg);
accumulator123arch/i386/math-emu/poly_sin.cechange = round_Xsig(&accumulator);
accumulator150arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
accumulator152arch/i386/math-emu/poly_sin.cmul_Xsig_Xsig(&accumulator, &argSqrd);
accumulator153arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator155arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
accumulator157arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator159arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &fixed_arg);
accumulator160arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &fixed_arg);
accumulator162arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, 3);
accumulator163arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator165arch/i386/math-emu/poly_sin.cadd_Xsig_Xsig(&accumulator, &argSqrd);
accumulator167arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, 1);
accumulator169arch/i386/math-emu/poly_sin.caccumulator.lsw |= 1;  /* A zero accumulator here would cause problems */
accumulator170arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator188arch/i386/math-emu/poly_sin.cadj = accumulator.lsw;    /* temp save */
accumulator189arch/i386/math-emu/poly_sin.caccumulator.lsw -= fix_up;
accumulator190arch/i386/math-emu/poly_sin.cif ( accumulator.lsw > adj )
accumulator191arch/i386/math-emu/poly_sin.cXSIG_LL(accumulator) --;
accumulator193arch/i386/math-emu/poly_sin.cechange = round_Xsig(&accumulator);
accumulator198arch/i386/math-emu/poly_sin.csignificand(result) = XSIG_LL(accumulator);
accumulator220arch/i386/math-emu/poly_sin.cXsig                accumulator, argSqrd, fix_up, argTo4;
accumulator245arch/i386/math-emu/poly_sin.caccumulator.lsw = accumulator.midw = accumulator.msw = 0;
accumulator264arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
accumulator266arch/i386/math-emu/poly_sin.cmul_Xsig_Xsig(&accumulator, &argSqrd);
accumulator267arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator269arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
accumulator271arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator273arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &significand(arg));
accumulator274arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &significand(arg));
accumulator275arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, -2*(1+exponent));
accumulator277arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, 3);
accumulator278arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator280arch/i386/math-emu/poly_sin.cadd_Xsig_Xsig(&accumulator, &argSqrd);
accumulator282arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, 1);
accumulator286arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator288arch/i386/math-emu/poly_sin.cif ( accumulator.lsw & 0x80000000 )
accumulator289arch/i386/math-emu/poly_sin.cXSIG_LL(accumulator) ++;
accumulator290arch/i386/math-emu/poly_sin.cif ( accumulator.msw == 0 )
accumulator297arch/i386/math-emu/poly_sin.csignificand(result) = XSIG_LL(accumulator);
accumulator343arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
accumulator345arch/i386/math-emu/poly_sin.cmul_Xsig_Xsig(&accumulator, &argSqrd);
accumulator346arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator348arch/i386/math-emu/poly_sin.cpolynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
accumulator351arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, 2);    /* Divide by four */
accumulator352arch/i386/math-emu/poly_sin.caccumulator.msw |= 0x80000000;  /* Add 1.0 */
accumulator354arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &fixed_arg);
accumulator355arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &fixed_arg);
accumulator356arch/i386/math-emu/poly_sin.cmul64_Xsig(&accumulator, &fixed_arg);
accumulator362arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, exp2 - exponent);
accumulator364arch/i386/math-emu/poly_sin.cnegate_Xsig(&accumulator);
accumulator365arch/i386/math-emu/poly_sin.cXSIG_LL(accumulator) += fixed_arg;
accumulator386arch/i386/math-emu/poly_sin.cexp2 += norm_Xsig(&accumulator);
accumulator387arch/i386/math-emu/poly_sin.cshr_Xsig(&accumulator, 1); /* Prevent overflow */
accumulator391arch/i386/math-emu/poly_sin.cadd_Xsig_Xsig(&accumulator, &fix_up);
accumulator393arch/i386/math-emu/poly_sin.cechange = round_Xsig(&accumulator);
accumulator397arch/i386/math-emu/poly_sin.csignificand(result) = XSIG_LL(accumulator);