root/arch/i386/kernel/time.c

/* [previous][next][first][last][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. timer_interrupt
  2. mktime
  3. time_init
  4. do_gettimeoffset
  5. do_gettimeofday
  6. do_settimeofday
  7. set_rtc_mmss

   1 /*
   2  *  linux/arch/i386/kernel/time.c
   3  *
   4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   5  *
   6  * This file contains the PC-specific time handling details:
   7  * reading the RTC at bootup, etc..
   8  * 1994-07-02    Alan Modra
   9  *      fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10  * 1995-03-26    Markus Kuhn
  11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
  12  *      precision CMOS clock update
  13  */
  14 #include <linux/errno.h>
  15 #include <linux/sched.h>
  16 #include <linux/kernel.h>
  17 #include <linux/param.h>
  18 #include <linux/string.h>
  19 #include <linux/mm.h>
  20 
  21 #include <asm/segment.h>
  22 #include <asm/io.h>
  23 
  24 #include <linux/mc146818rtc.h>
  25 #include <linux/timex.h>
  26 
  27 #define TIMER_IRQ 0
  28 
  29 static int set_rtc_mmss(unsigned long);
  30 
  31 /*
  32  * timer_interrupt() needs to keep up the real-time clock,
  33  * as well as call the "do_timer()" routine every clocktick
  34  */
  35 static void timer_interrupt(int irq, struct pt_regs * regs)
     /* [previous][next][first][last][top][bottom][index][help] */
  36 {
  37         /* last time the cmos clock got updated */
  38         static long last_rtc_update=0;
  39 
  40         do_timer(regs);
  41 
  42         /*
  43          * If we have an externally synchronized Linux clock, then update
  44          * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  45          * called as close as possible to 500 ms before the new second starts.
  46          */
  47         if (time_state != TIME_BAD && xtime.tv_sec > last_rtc_update + 660 &&
  48             xtime.tv_usec > 500000 - (tick >> 1) &&
  49             xtime.tv_usec < 500000 + (tick >> 1))
  50           if (set_rtc_mmss(xtime.tv_sec) == 0)
  51             last_rtc_update = xtime.tv_sec;
  52           else
  53             last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
  54 }
  55 
  56 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  57  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  58  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  59  *
  60  * [For the Julian calendar (which was used in Russia before 1917,
  61  * Britain & colonies before 1752, anywhere else before 1582,
  62  * and is still in use by some communities) leave out the
  63  * -year/100+year/400 terms, and add 10.]
  64  *
  65  * This algorithm was first published by Gauss (I think).
  66  *
  67  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  68  * machines were long is 32-bit! (However, as time_t is signed, we
  69  * will already get problems at other places on 2038-01-19 03:14:08)
  70  */
  71 static inline unsigned long mktime(unsigned int year, unsigned int mon,
     /* [previous][next][first][last][top][bottom][index][help] */
  72         unsigned int day, unsigned int hour,
  73         unsigned int min, unsigned int sec)
  74 {
  75         if (0 >= (int) (mon -= 2)) {    /* 1..12 -> 11,12,1..10 */
  76                 mon += 12;      /* Puts Feb last since it has leap day */
  77                 year -= 1;
  78         }
  79         return (((
  80             (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
  81               year*365 - 719499
  82             )*24 + hour /* now have hours */
  83            )*60 + min /* now have minutes */
  84           )*60 + sec; /* finally seconds */
  85 }
  86 
  87 void time_init(void)
     /* [previous][next][first][last][top][bottom][index][help] */
  88 {
  89         unsigned int year, mon, day, hour, min, sec;
  90         int i;
  91 
  92         /* The Linux interpretation of the CMOS clock register contents:
  93          * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
  94          * RTC registers show the second which has precisely just started.
  95          * Let's hope other operating systems interpret the RTC the same way.
  96          */
  97         /* read RTC exactly on falling edge of update flag */
  98         for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
  99                 if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
 100                         break;
 101         for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
 102                 if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
 103                         break;
 104         do { /* Isn't this overkill ? UIP above should guarantee consistency */
 105                 sec = CMOS_READ(RTC_SECONDS);
 106                 min = CMOS_READ(RTC_MINUTES);
 107                 hour = CMOS_READ(RTC_HOURS);
 108                 day = CMOS_READ(RTC_DAY_OF_MONTH);
 109                 mon = CMOS_READ(RTC_MONTH);
 110                 year = CMOS_READ(RTC_YEAR);
 111         } while (sec != CMOS_READ(RTC_SECONDS));
 112         if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 113           {
 114             BCD_TO_BIN(sec);
 115             BCD_TO_BIN(min);
 116             BCD_TO_BIN(hour);
 117             BCD_TO_BIN(day);
 118             BCD_TO_BIN(mon);
 119             BCD_TO_BIN(year);
 120           }
 121         if ((year += 1900) < 1970)
 122                 year += 100;
 123         xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
 124         xtime.tv_usec = 0;
 125         if (request_irq(TIMER_IRQ, timer_interrupt, 0, "timer") != 0)
 126                 panic("Could not allocate timer IRQ!");
 127 }
 128 
 129 /* This function must be called with interrupts disabled 
 130  * It was inspired by Steve McCanne's microtime-i386 for BSD.  -- jrs
 131  * 
 132  * However, the pc-audio speaker driver changes the divisor so that
 133  * it gets interrupted rather more often - it loads 64 into the
 134  * counter rather than 11932! This has an adverse impact on
 135  * do_gettimeoffset() -- it stops working! What is also not
 136  * good is that the interval that our timer function gets called
 137  * is no longer 10.0002 ms, but 9.9767 ms. To get around this
 138  * would require using a different timing source. Maybe someone
 139  * could use the RTC - I know that this can interrupt at frequencies
 140  * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix
 141  * it so that at startup, the timer code in sched.c would select
 142  * using either the RTC or the 8253 timer. The decision would be
 143  * based on whether there was any other device around that needed
 144  * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz,
 145  * and then do some jiggery to have a version of do_timer that 
 146  * advanced the clock by 1/1024 s. Every time that reached over 1/100
 147  * of a second, then do all the old code. If the time was kept correct
 148  * then do_gettimeoffset could just return 0 - there is no low order
 149  * divider that can be accessed.
 150  *
 151  * Ideally, you would be able to use the RTC for the speaker driver,
 152  * but it appears that the speaker driver really needs interrupt more
 153  * often than every 120 us or so.
 154  *
 155  * Anyway, this needs more thought....          pjsg (1993-08-28)
 156  * 
 157  * If you are really that interested, you should be reading
 158  * comp.protocols.time.ntp!
 159  */
 160 
 161 #define TICK_SIZE tick
 162 
 163 static inline unsigned long do_gettimeoffset(void)
     /* [previous][next][first][last][top][bottom][index][help] */
 164 {
 165         int count;
 166         unsigned long offset = 0;
 167 
 168         /* timer count may underflow right here */
 169         outb_p(0x00, 0x43);     /* latch the count ASAP */
 170         count = inb_p(0x40);    /* read the latched count */
 171         count |= inb(0x40) << 8;
 172         /* we know probability of underflow is always MUCH less than 1% */
 173         if (count > (LATCH - LATCH/100)) {
 174                 /* check for pending timer interrupt */
 175                 outb_p(0x0a, 0x20);
 176                 if (inb(0x20) & 1)
 177                         offset = TICK_SIZE;
 178         }
 179         count = ((LATCH-1) - count) * TICK_SIZE;
 180         count = (count + LATCH/2) / LATCH;
 181         return offset + count;
 182 }
 183 
 184 /*
 185  * This version of gettimeofday has near microsecond resolution.
 186  */
 187 void do_gettimeofday(struct timeval *tv)
     /* [previous][next][first][last][top][bottom][index][help] */
 188 {
 189         unsigned long flags;
 190 
 191         save_flags(flags);
 192         cli();
 193         *tv = xtime;
 194         tv->tv_usec += do_gettimeoffset();
 195         if (tv->tv_usec >= 1000000) {
 196                 tv->tv_usec -= 1000000;
 197                 tv->tv_sec++;
 198         }
 199         restore_flags(flags);
 200 }
 201 
 202 void do_settimeofday(struct timeval *tv)
     /* [previous][next][first][last][top][bottom][index][help] */
 203 {
 204         cli();
 205         /* This is revolting. We need to set the xtime.tv_usec
 206          * correctly. However, the value in this location is
 207          * is value at the last tick.
 208          * Discover what correction gettimeofday
 209          * would have done, and then undo it!
 210          */
 211         tv->tv_usec -= do_gettimeoffset();
 212 
 213         if (tv->tv_usec < 0) {
 214                 tv->tv_usec += 1000000;
 215                 tv->tv_sec--;
 216         }
 217 
 218         xtime = *tv;
 219         time_state = TIME_BAD;
 220         time_maxerror = 0x70000000;
 221         time_esterror = 0x70000000;
 222         sti();
 223 }
 224 
 225 
 226 /*
 227  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 228  * called 500 ms after the second nowtime has started, because when
 229  * nowtime is written into the registers of the CMOS clock, it will
 230  * jump to the next second precisely 500 ms later. Check the Motorola
 231  * MC146818A or Dallas DS12887 data sheet for details.
 232  */
 233 static int set_rtc_mmss(unsigned long nowtime)
     /* [previous][next][first][last][top][bottom][index][help] */
 234 {
 235         int retval = 0;
 236         int real_seconds, real_minutes, cmos_minutes;
 237         unsigned char save_control, save_freq_select;
 238 
 239         save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
 240         CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 241 
 242         save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
 243         CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 244 
 245         cmos_minutes = CMOS_READ(RTC_MINUTES);
 246         if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 247                 BCD_TO_BIN(cmos_minutes);
 248 
 249         /*
 250          * since we're only adjusting minutes and seconds,
 251          * don't interfere with hour overflow. This avoids
 252          * messing with unknown time zones but requires your
 253          * RTC not to be off by more than 15 minutes
 254          */
 255         real_seconds = nowtime % 60;
 256         real_minutes = nowtime / 60;
 257         if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
 258                 real_minutes += 30;             /* correct for half hour time zone */
 259         real_minutes %= 60;
 260 
 261         if (abs(real_minutes - cmos_minutes) < 30) {
 262                 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 263                         BIN_TO_BCD(real_seconds);
 264                         BIN_TO_BCD(real_minutes);
 265                 }
 266                 CMOS_WRITE(real_seconds,RTC_SECONDS);
 267                 CMOS_WRITE(real_minutes,RTC_MINUTES);
 268         } else
 269                 retval = -1;
 270 
 271         /* The following flags have to be released exactly in this order,
 272          * otherwise the DS12887 (popular MC146818A clone with integrated
 273          * battery and quartz) will not reset the oscillator and will not
 274          * update precisely 500 ms later. You won't find this mentioned in
 275          * the Dallas Semiconductor data sheets, but who believes data
 276          * sheets anyway ...                           -- Markus Kuhn
 277          */
 278         CMOS_WRITE(save_control, RTC_CONTROL);
 279         CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 280 
 281         return retval;
 282 }

/* [previous][next][first][last][top][bottom][index][help] */