1 | 2 | sacos.sa 3.3 12/19/90 3 | 4 | Description: The entry point sAcos computes the inverse cosine of 5 | an input argument; sAcosd does the same except for denormalized 6 | input. 7 | 8 | Input: Double-extended number X in location pointed to 9 | by address register a0. 10 | 11 | Output: The value arccos(X) returned in floating-point register Fp0. 12 | 13 | Accuracy and Monotonicity: The returned result is within 3 ulps in 14 | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the 15 | result is subsequently rounded to double precision. The 16 | result is provably monotonic in double precision. 17 | 18 | Speed: The program sCOS takes approximately 310 cycles. 19 | 20 | Algorithm: 21 | 22 | ACOS 23 | 1. If |X| >= 1, go to 3. 24 | 25 | 2. (|X| < 1) Calculate acos(X) by 26 | z := (1-X) / (1+X) 27 | acos(X) = 2 * atan( sqrt(z) ). 28 | Exit. 29 | 30 | 3. If |X| > 1, go to 5. 31 | 32 | 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. 33 | 34 | 5. (|X| > 1) Generate an invalid operation by 0 * infinity. 35 | Exit. 36 | 37 38 | Copyright (C) Motorola, Inc. 1990 39 | All Rights Reserved 40 | 41 | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA 42 | The copyright notice above does not evidence any 43 | actual or intended publication of such source code. 44 45 |SACOS idnt 2,1 | Motorola 040 Floating Point Software Package 46 47 |section 8 48 49 PI: .long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 50 PIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 51 52 |xref t_operr 53 |xref t_frcinx 54 |xref satan 55 56 .global sacosd 57 sacosd: 58 |--ACOS(X) = PI/2 FOR DENORMALIZED X 59 fmovel %d1,%fpcr | ...load user's rounding mode/precision 60 fmovex PIBY2,%fp0 61 bra t_frcinx 62 63 .global sacos 64 sacos: 65 fmovex (%a0),%fp0 | ...LOAD INPUT 66 67 movel (%a0),%d0 | ...pack exponent with upper 16 fraction 68 movew 4(%a0),%d0 69 andil #0x7FFFFFFF,%d0 70 cmpil #0x3FFF8000,%d0 71 bges ACOSBIG 72 73 |--THIS IS THE USUAL CASE, |X| < 1 74 |--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) 75 76 fmoves #0x3F800000,%fp1 77 faddx %fp0,%fp1 | ...1+X 78 fnegx %fp0 | ... -X 79 fadds #0x3F800000,%fp0 | ...1-X 80 fdivx %fp1,%fp0 | ...(1-X)/(1+X) 81 fsqrtx %fp0 | ...SQRT((1-X)/(1+X)) 82 fmovemx %fp0-%fp0,(%a0) | ...overwrite input 83 movel %d1,-(%sp) |save original users fpcr 84 clrl %d1 85 bsr satan | ...ATAN(SQRT([1-X]/[1+X])) 86 fmovel (%sp)+,%fpcr |restore users exceptions 87 faddx %fp0,%fp0 | ...2 * ATAN( STUFF ) 88 bra t_frcinx 89 90 ACOSBIG: 91 fabsx %fp0 92 fcmps #0x3F800000,%fp0 93 fbgt t_operr |cause an operr exception 94 95 |--|X| = 1, ACOS(X) = 0 OR PI 96 movel (%a0),%d0 | ...pack exponent with upper 16 fraction 97 movew 4(%a0),%d0 98 cmpl #0,%d0 |D0 has original exponent+fraction 99 bgts ACOSP1 100 101 |--X = -1 102 |Returns PI and inexact exception 103 fmovex PI,%fp0 104 fmovel %d1,%FPCR 105 fadds #0x00800000,%fp0 |cause an inexact exception to be put 106 | ;into the 040 - will not trap until next 107 | ;fp inst. 108 bra t_frcinx 109 110 ACOSP1: 111 fmovel %d1,%FPCR 112 fmoves #0x00000000,%fp0 113 rts |Facos ; of +1 is exact 114 115 |end