root/kernel/time.c

/* [previous][next][first][last][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mktime
  2. time_init
  3. sys_time
  4. sys_stime
  5. do_gettimeoffset
  6. do_gettimeofday
  7. sys_gettimeofday
  8. warp_clock
  9. sys_settimeofday
  10. sys_adjtimex
  11. set_rtc_mmss

   1 /*
   2  *  linux/kernel/time.c
   3  *
   4  *  Copyright (C) 1991, 1992  Linus Torvalds
   5  *
   6  *  This file contains the interface functions for the various
   7  *  time related system calls: time, stime, gettimeofday, settimeofday,
   8  *                             adjtime
   9  */
  10 /*
  11  * Modification history kernel/time.c
  12  * 
  13  * 02 Sep 93    Philip Gladstone
  14  *      Created file with time related functions from sched.c and adjtimex() 
  15  * 08 Oct 93    Torsten Duwe
  16  *      adjtime interface update and CMOS clock write code
  17  * 02 Jul 94    Alan Modra
  18  *      fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  19  */
  20 
  21 #include <linux/config.h>
  22 #include <linux/errno.h>
  23 #include <linux/sched.h>
  24 #include <linux/kernel.h>
  25 #include <linux/param.h>
  26 #include <linux/string.h>
  27 
  28 #include <asm/segment.h>
  29 #include <asm/io.h>
  30 
  31 #include <linux/mc146818rtc.h>
  32 #define RTC_ALWAYS_BCD 1
  33 
  34 #include <linux/timex.h>
  35 
  36 /* converts date to days since 1/1/1970
  37  * assumes year,mon,day in normal date format
  38  * ie. 1/1/1970 => year=1970, mon=1, day=1
  39  *
  40  * For the Julian calendar (which was used in Russia before 1917,
  41  * Britain & colonies before 1752, anywhere else before 1582,
  42  * and is still in use by some communities) leave out the
  43  * -year/100+year/400 terms, and add 10.
  44  *
  45  * This algorithm was first published by Gauss (I think).
  46  */
  47 static inline unsigned long mktime(unsigned int year, unsigned int mon,
     /* [previous][next][first][last][top][bottom][index][help] */
  48         unsigned int day, unsigned int hour,
  49         unsigned int min, unsigned int sec)
  50 {
  51         if (0 >= (int) (mon -= 2)) {    /* 1..12 -> 11,12,1..10 */
  52                 mon += 12;      /* Puts Feb last since it has leap day */
  53                 year -= 1;
  54         }
  55         return (((
  56             (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
  57               year*365 - 719499
  58             )*24 + hour /* now have hours */
  59            )*60 + min /* now have minutes */
  60           )*60 + sec; /* finally seconds */
  61 }
  62 
  63 void time_init(void)
     /* [previous][next][first][last][top][bottom][index][help] */
  64 {
  65         unsigned int year, mon, day, hour, min, sec;
  66         int i;
  67 
  68         /* checking for Update-In-Progress could be done more elegantly
  69          * (using the "update finished"-interrupt for example), but that
  70          * would require excessive testing. promise I'll do that when I find
  71          * the time.                    - Torsten
  72          */
  73         /* read RTC exactly on falling edge of update flag */
  74         for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
  75                 if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
  76                         break;
  77         for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms*/
  78                 if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
  79                         break;
  80         do { /* Isn't this overkill ? UIP above should guarantee consistency */
  81                 sec = CMOS_READ(RTC_SECONDS);
  82                 min = CMOS_READ(RTC_MINUTES);
  83                 hour = CMOS_READ(RTC_HOURS);
  84                 day = CMOS_READ(RTC_DAY_OF_MONTH);
  85                 mon = CMOS_READ(RTC_MONTH);
  86                 year = CMOS_READ(RTC_YEAR);
  87         } while (sec != CMOS_READ(RTC_SECONDS));
  88         if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
  89           {
  90             BCD_TO_BIN(sec);
  91             BCD_TO_BIN(min);
  92             BCD_TO_BIN(hour);
  93             BCD_TO_BIN(day);
  94             BCD_TO_BIN(mon);
  95             BCD_TO_BIN(year);
  96           }
  97         if ((year += 1900) < 1970)
  98                 year += 100;
  99         xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
 100         xtime.tv_usec = 0;
 101 }
 102 /* 
 103  * The timezone where the local system is located.  Used as a default by some
 104  * programs who obtain this value by using gettimeofday.
 105  */
 106 struct timezone sys_tz = { 0, 0};
 107 
 108 asmlinkage int sys_time(long * tloc)
     /* [previous][next][first][last][top][bottom][index][help] */
 109 {
 110         int i, error;
 111 
 112         i = CURRENT_TIME;
 113         if (tloc) {
 114                 error = verify_area(VERIFY_WRITE, tloc, 4);
 115                 if (error)
 116                         return error;
 117                 put_fs_long(i,(unsigned long *)tloc);
 118         }
 119         return i;
 120 }
 121 
 122 asmlinkage int sys_stime(unsigned long * tptr)
     /* [previous][next][first][last][top][bottom][index][help] */
 123 {
 124         int error;
 125         unsigned long value;
 126 
 127         if (!suser())
 128                 return -EPERM;
 129         error = verify_area(VERIFY_READ, tptr, sizeof(*tptr));
 130         if (error)
 131                 return error;
 132         value = get_fs_long(tptr);
 133         cli();
 134         xtime.tv_sec = value;
 135         xtime.tv_usec = 0;
 136         time_status = TIME_BAD;
 137         time_maxerror = 0x70000000;
 138         time_esterror = 0x70000000;
 139         sti();
 140         return 0;
 141 }
 142 
 143 /* This function must be called with interrupts disabled 
 144  * It was inspired by Steve McCanne's microtime-i386 for BSD.  -- jrs
 145  * 
 146  * However, the pc-audio speaker driver changes the divisor so that
 147  * it gets interrupted rather more often - it loads 64 into the
 148  * counter rather than 11932! This has an adverse impact on
 149  * do_gettimeoffset() -- it stops working! What is also not
 150  * good is that the interval that our timer function gets called
 151  * is no longer 10.0002 msecs, but 9.9767 msec. To get around this
 152  * would require using a different timing source. Maybe someone
 153  * could use the RTC - I know that this can interrupt at frequencies
 154  * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix
 155  * it so that at startup, the timer code in sched.c would select
 156  * using either the RTC or the 8253 timer. The decision would be
 157  * based on whether there was any other device around that needed
 158  * to trample on the 8253. I'd set up the RTC to interrupt at 1024Hz,
 159  * and then do some jiggery to have a version of do_timer that 
 160  * advanced the clock by 1/1024 sec. Every time that reached over 1/100
 161  * of a second, then do all the old code. If the time was kept correct
 162  * then do_gettimeoffset could just return 0 - there is no low order
 163  * divider that can be accessed.
 164  *
 165  * Ideally, you would be able to use the RTC for the speaker driver,
 166  * but it appears that the speaker driver really needs interrupt more
 167  * often than every 120us or so.
 168  *
 169  * Anyway, this needs more thought....          pjsg (28 Aug 93)
 170  * 
 171  * If you are really that interested, you should be reading
 172  * comp.protocols.time.ntp!
 173  */
 174 
 175 #define TICK_SIZE tick
 176 
 177 static inline unsigned long do_gettimeoffset(void)
     /* [previous][next][first][last][top][bottom][index][help] */
 178 {
 179         int count;
 180         unsigned long offset = 0;
 181 
 182         /* timer count may underflow right here */
 183         outb_p(0x00, 0x43);     /* latch the count ASAP */
 184         count = inb_p(0x40);    /* read the latched count */
 185         count |= inb(0x40) << 8;
 186         /* we know probability of underflow is always MUCH less than 1% */
 187         if (count > (LATCH - LATCH/100)) {
 188                 /* check for pending timer interrupt */
 189                 outb_p(0x0a, 0x20);
 190                 if (inb(0x20) & 1)
 191                         offset = TICK_SIZE;
 192         }
 193         count = ((LATCH-1) - count) * TICK_SIZE;
 194         count = (count + LATCH/2) / LATCH;
 195         return offset + count;
 196 }
 197 
 198 /*
 199  * This version of gettimeofday has near microsecond resolution.
 200  */
 201 void do_gettimeofday(struct timeval *tv)
     /* [previous][next][first][last][top][bottom][index][help] */
 202 {
 203         unsigned long flags;
 204 
 205         save_flags(flags);
 206         cli();
 207 #ifdef __i386__
 208         *tv = xtime;
 209         tv->tv_usec += do_gettimeoffset();
 210         if (tv->tv_usec >= 1000000) {
 211                 tv->tv_usec -= 1000000;
 212                 tv->tv_sec++;
 213         }
 214 #else /* not __i386__ */
 215         *tv = xtime;
 216 #endif /* not __i386__ */
 217         restore_flags(flags);
 218 }
 219 
 220 asmlinkage int sys_gettimeofday(struct timeval *tv, struct timezone *tz)
     /* [previous][next][first][last][top][bottom][index][help] */
 221 {
 222         int error;
 223 
 224         if (tv) {
 225                 struct timeval ktv;
 226                 error = verify_area(VERIFY_WRITE, tv, sizeof *tv);
 227                 if (error)
 228                         return error;
 229                 do_gettimeofday(&ktv);
 230                 put_fs_long(ktv.tv_sec, (unsigned long *) &tv->tv_sec);
 231                 put_fs_long(ktv.tv_usec, (unsigned long *) &tv->tv_usec);
 232         }
 233         if (tz) {
 234                 error = verify_area(VERIFY_WRITE, tz, sizeof *tz);
 235                 if (error)
 236                         return error;
 237                 put_fs_long(sys_tz.tz_minuteswest, (unsigned long *) tz);
 238                 put_fs_long(sys_tz.tz_dsttime, ((unsigned long *) tz)+1);
 239         }
 240         return 0;
 241 }
 242 
 243 /*
 244  * Adjust the time obtained from the CMOS to be GMT time instead of
 245  * local time.
 246  * 
 247  * This is ugly, but preferable to the alternatives.  Otherwise we
 248  * would either need to write a program to do it in /etc/rc (and risk
 249  * confusion if the program gets run more than once; it would also be 
 250  * hard to make the program warp the clock precisely n hours)  or
 251  * compile in the timezone information into the kernel.  Bad, bad....
 252  *
 253  * XXX Currently does not adjust for daylight savings time.  May not
 254  * need to do anything, depending on how smart (dumb?) the BIOS
 255  * is.  Blast it all.... the best thing to do not depend on the CMOS
 256  * clock at all, but get the time via NTP or timed if you're on a 
 257  * network....                          - TYT, 1/1/92
 258  */
 259 inline static void warp_clock(void)
     /* [previous][next][first][last][top][bottom][index][help] */
 260 {
 261         cli();
 262         xtime.tv_sec += sys_tz.tz_minuteswest * 60;
 263         sti();
 264 }
 265 
 266 /*
 267  * The first time we set the timezone, we will warp the clock so that
 268  * it is ticking GMT time instead of local time.  Presumably, 
 269  * if someone is setting the timezone then we are running in an
 270  * environment where the programs understand about timezones.
 271  * This should be done at boot time in the /etc/rc script, as
 272  * soon as possible, so that the clock can be set right.  Otherwise,
 273  * various programs will get confused when the clock gets warped.
 274  */
 275 asmlinkage int sys_settimeofday(struct timeval *tv, struct timezone *tz)
     /* [previous][next][first][last][top][bottom][index][help] */
 276 {
 277         static int      firsttime = 1;
 278         struct timeval  new_tv;
 279         struct timezone new_tz;
 280 
 281         if (!suser())
 282                 return -EPERM;
 283         if (tv) {
 284                 int error = verify_area(VERIFY_READ, tv, sizeof(*tv));
 285                 if (error)
 286                         return error;
 287                 memcpy_fromfs(&new_tv, tv, sizeof(*tv));
 288         }
 289         if (tz) {
 290                 int error = verify_area(VERIFY_READ, tz, sizeof(*tz));
 291                 if (error)
 292                         return error;
 293                 memcpy_fromfs(&new_tz, tz, sizeof(*tz));
 294         }
 295         if (tz) {
 296                 sys_tz = new_tz;
 297                 if (firsttime) {
 298                         firsttime = 0;
 299                         if (!tv)
 300                                 warp_clock();
 301                 }
 302         }
 303         if (tv) {
 304                 cli();
 305                 /* This is revolting. We need to set the xtime.tv_usec
 306                  * correctly. However, the value in this location is
 307                  * is value at the last tick.
 308                  * Discover what correction gettimeofday
 309                  * would have done, and then undo it!
 310                  */
 311                 new_tv.tv_usec -= do_gettimeoffset();
 312 
 313                 if (new_tv.tv_usec < 0) {
 314                         new_tv.tv_usec += 1000000;
 315                         new_tv.tv_sec--;
 316                 }
 317 
 318                 xtime = new_tv;
 319                 time_status = TIME_BAD;
 320                 time_maxerror = 0x70000000;
 321                 time_esterror = 0x70000000;
 322                 sti();
 323         }
 324         return 0;
 325 }
 326 
 327 /* adjtimex mainly allows reading (and writing, if superuser) of
 328  * kernel time-keeping variables. used by xntpd.
 329  */
 330 asmlinkage int sys_adjtimex(struct timex *txc_p)
     /* [previous][next][first][last][top][bottom][index][help] */
 331 {
 332         long ltemp, mtemp, save_adjust;
 333         int error;
 334 
 335         /* Local copy of parameter */
 336         struct timex txc;
 337 
 338         error = verify_area(VERIFY_WRITE, txc_p, sizeof(struct timex));
 339         if (error)
 340           return error;
 341 
 342         /* Copy the user data space into the kernel copy
 343          * structure. But bear in mind that the structures
 344          * may change
 345          */
 346         memcpy_fromfs(&txc, txc_p, sizeof(struct timex));
 347 
 348         /* In order to modify anything, you gotta be super-user! */
 349         if (txc.mode && !suser())
 350                 return -EPERM;
 351 
 352         /* Now we validate the data before disabling interrupts
 353          */
 354 
 355         if (txc.mode != ADJ_OFFSET_SINGLESHOT && (txc.mode & ADJ_OFFSET))
 356           /* Microsec field limited to -131000 .. 131000 usecs */
 357           if (txc.offset <= -(1 << (31 - SHIFT_UPDATE))
 358               || txc.offset >= (1 << (31 - SHIFT_UPDATE)))
 359             return -EINVAL;
 360 
 361         /* time_status must be in a fairly small range */
 362         if (txc.mode & ADJ_STATUS)
 363           if (txc.status < TIME_OK || txc.status > TIME_BAD)
 364             return -EINVAL;
 365 
 366         /* if the quartz is off by more than 10% something is VERY wrong ! */
 367         if (txc.mode & ADJ_TICK)
 368           if (txc.tick < 900000/HZ || txc.tick > 1100000/HZ)
 369             return -EINVAL;
 370 
 371         cli();
 372 
 373         /* Save for later - semantics of adjtime is to return old value */
 374         save_adjust = time_adjust;
 375 
 376         /* If there are input parameters, then process them */
 377         if (txc.mode)
 378         {
 379             if (time_status == TIME_BAD)
 380                 time_status = TIME_OK;
 381 
 382             if (txc.mode & ADJ_STATUS)
 383                 time_status = txc.status;
 384 
 385             if (txc.mode & ADJ_FREQUENCY)
 386                 time_freq = txc.frequency << (SHIFT_KF - 16);
 387 
 388             if (txc.mode & ADJ_MAXERROR)
 389                 time_maxerror = txc.maxerror;
 390 
 391             if (txc.mode & ADJ_ESTERROR)
 392                 time_esterror = txc.esterror;
 393 
 394             if (txc.mode & ADJ_TIMECONST)
 395                 time_constant = txc.time_constant;
 396 
 397             if (txc.mode & ADJ_OFFSET)
 398               if (txc.mode == ADJ_OFFSET_SINGLESHOT)
 399                 {
 400                   time_adjust = txc.offset;
 401                 }
 402               else /* XXX should give an error if other bits set */
 403                 {
 404                   time_offset = txc.offset << SHIFT_UPDATE;
 405                   mtemp = xtime.tv_sec - time_reftime;
 406                   time_reftime = xtime.tv_sec;
 407                   if (mtemp > (MAXSEC+2) || mtemp < 0)
 408                     mtemp = 0;
 409 
 410                   if (txc.offset < 0)
 411                     time_freq -= (-txc.offset * mtemp) >>
 412                       (time_constant + time_constant);
 413                   else
 414                     time_freq += (txc.offset * mtemp) >>
 415                       (time_constant + time_constant);
 416 
 417                   ltemp = time_tolerance << SHIFT_KF;
 418 
 419                   if (time_freq > ltemp)
 420                     time_freq = ltemp;
 421                   else if (time_freq < -ltemp)
 422                     time_freq = -ltemp;
 423                 }
 424             if (txc.mode & ADJ_TICK)
 425               tick = txc.tick;
 426 
 427         }
 428         txc.offset         = save_adjust;
 429         txc.frequency      = ((time_freq+1) >> (SHIFT_KF - 16));
 430         txc.maxerror       = time_maxerror;
 431         txc.esterror       = time_esterror;
 432         txc.status         = time_status;
 433         txc.time_constant  = time_constant;
 434         txc.precision      = time_precision;
 435         txc.tolerance      = time_tolerance;
 436         txc.time           = xtime;
 437         txc.tick           = tick;
 438 
 439         sti();
 440 
 441         memcpy_tofs(txc_p, &txc, sizeof(struct timex));
 442         return time_status;
 443 }
 444 
 445 int set_rtc_mmss(unsigned long nowtime)
     /* [previous][next][first][last][top][bottom][index][help] */
 446 {
 447   int retval = 0;
 448   int real_seconds, real_minutes, cmos_minutes;
 449   unsigned char save_control, save_freq_select;
 450 
 451   save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
 452   CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 453 
 454   save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
 455   CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 456 
 457   cmos_minutes = CMOS_READ(RTC_MINUTES);
 458   if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 459     BCD_TO_BIN(cmos_minutes);
 460 
 461   /* since we're only adjusting minutes and seconds,
 462    * don't interfere with hour overflow. This avoids
 463    * messing with unknown time zones but requires your
 464    * RTC not to be off by more than 15 minutes
 465    */
 466   real_seconds = nowtime % 60;
 467   real_minutes = nowtime / 60;
 468   if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
 469     real_minutes += 30;         /* correct for half hour time zone */
 470   real_minutes %= 60;
 471 
 472   if (abs(real_minutes - cmos_minutes) < 30)
 473     {
 474       if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 475         {
 476           BIN_TO_BCD(real_seconds);
 477           BIN_TO_BCD(real_minutes);
 478         }
 479       CMOS_WRITE(real_seconds,RTC_SECONDS);
 480       CMOS_WRITE(real_minutes,RTC_MINUTES);
 481     }
 482   else
 483     retval = -1;
 484 
 485   CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 486   CMOS_WRITE(save_control, RTC_CONTROL);
 487   return retval;
 488 }

/* [previous][next][first][last][top][bottom][index][help] */