root/arch/sparc/kernel/probe.c

/* [previous][next][first][last][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. find_mmu_num_contexts
  2. probe_cpu
  3. probe_vac
  4. probe_mmu
  5. probe_clock
  6. probe_auxio
  7. probe_devices

   1 /* probe.c: Preliminary device tree probing routines...
   2  *
   3  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
   4  */
   5 
   6 #include <linux/kernel.h>
   7 #include <linux/mm.h>
   8 #include <linux/sched.h>
   9 #include <linux/string.h>
  10 
  11 #include <asm/oplib.h>
  12 #include <asm/vac-ops.h>
  13 #include <asm/idprom.h>
  14 #include <asm/io.h>
  15 #include <asm/vaddrs.h>
  16 #include <asm/param.h>
  17 #include <asm/timer.h>
  18 #include <asm/mostek.h>
  19 #include <asm/auxio.h>
  20 #include <asm/system.h>
  21 #include <asm/mp.h>
  22 #include <asm/mbus.h>
  23 
  24 /* #define DEBUG_PROBING */
  25 
  26 /* XXX Grrr, this stuff should have it's own file, only generic stuff goes
  27  * XXX here.  Possibly clock.c and timer.c?
  28  */
  29 enum sparc_clock_type sp_clock_typ;
  30 struct mostek48t02 *mstk48t02_regs;
  31 struct mostek48t08 *mstk48t08_regs;
  32 volatile unsigned int *master_l10_limit = 0;
  33 struct sun4m_timer_regs *sun4m_timers;
  34 
  35 static char node_str[128];
  36 
  37 /* Cpu-type information and manufacturer strings */
  38 
  39 struct cpu_iu_info {
  40   int psr_impl;
  41   int psr_vers;
  42   char* cpu_name;   /* should be enough I hope... */
  43 };
  44 
  45 struct cpu_fp_info {
  46   int psr_impl;
  47   int fp_vers;
  48   char* fp_name;
  49 };
  50 
  51 /* In order to get the fpu type correct, you need to take the IDPROM's
  52  * machine type value into consideration too.  I will fix this.
  53  */
  54 struct cpu_fp_info linux_sparc_fpu[] = {
  55   { 0, 0, "Fujitsu MB86910 or Weitek WTL1164/5"},
  56   { 0, 1, "Fujitsu MB86911 or Weitek WTL1164/5 or LSI L64831"},
  57   { 0, 2, "LSI Logic L64802 or Texas Instruments ACT8847"},
  58   /* SparcStation SLC, SparcStation1 */
  59   { 0, 3, "Weitek WTL3170/2"},
  60   /* SPARCstation-5 */
  61   { 0, 4, "Lsi Logic/Meiko L64804 or compatible"},
  62   { 0, 5, "reserved"},
  63   { 0, 6, "reserved"},
  64   { 0, 7, "No FPU"},
  65   { 1, 0, "ROSS HyperSparc combined IU/FPU"},
  66   { 1, 1, "Lsi Logic L64814"},
  67   { 1, 2, "Texas Instruments TMS390-C602A"},
  68   { 1, 3, "Cypress CY7C602 FPU"},
  69   { 1, 4, "reserved"},
  70   { 1, 5, "reserved"},
  71   { 1, 6, "reserved"},
  72   { 1, 7, "No FPU"},
  73   { 2, 0, "BIT B5010 or B5110/20 or B5210"},
  74   { 2, 1, "reserved"},
  75   { 2, 2, "reserved"},
  76   { 2, 3, "reserved"},
  77   { 2, 4, "reserved"},
  78   { 2, 5, "reserved"},
  79   { 2, 6, "reserved"},
  80   { 2, 7, "No FPU"},
  81   /* SuperSparc 50 module */
  82   { 4, 0, "SuperSparc on-chip FPU"},
  83   /* SparcClassic */
  84   { 4, 4, "TI MicroSparc on chip FPU"},
  85   { 5, 0, "Matsushita MN10501"},
  86   { 5, 1, "reserved"},
  87   { 5, 2, "reserved"},
  88   { 5, 3, "reserved"},
  89   { 5, 4, "reserved"},
  90   { 5, 5, "reserved"},
  91   { 5, 6, "reserved"},
  92   { 5, 7, "No FPU"},
  93 };
  94 
  95 #define NSPARCFPU  (sizeof(linux_sparc_fpu)/sizeof(struct cpu_fp_info))
  96 
  97 struct cpu_iu_info linux_sparc_chips[] = {
  98   /* Sun4/100, 4/200, SLC */
  99   { 0, 0, "Fujitsu  MB86900/1A or LSI L64831 SparcKIT-40"},
 100   /* borned STP1012PGA */
 101   { 0, 4, "Fujitsu  MB86904"},
 102   /* SparcStation2, SparcServer 490 & 690 */
 103   { 1, 0, "LSI Logic Corporation - L64811"},
 104   /* SparcStation2 */
 105   { 1, 1, "Cypress/ROSS CY7C601"},
 106   /* Embedded controller */
 107   { 1, 3, "Cypress/ROSS CY7C611"},
 108   /* Ross Technologies HyperSparc */
 109   { 1, 0xf, "ROSS HyperSparc RT620"},
 110   { 1, 0xe, "ROSS HyperSparc RT625"},
 111   /* ECL Implementation, CRAY S-MP Supercomputer... AIEEE! */
 112   /* Someone please write the code to support this beast! ;) */
 113   { 2, 0, "Bipolar Integrated Technology - B5010"},
 114   { 3, 0, "LSI Logic Corporation - unknown-type"},
 115   { 4, 0, "Texas Instruments, Inc. - SuperSparc 50"},
 116   /* SparcClassic  --  borned STP1010TAB-50*/
 117   { 4, 1, "Texas Instruments, Inc. - MicroSparc"},
 118   { 4, 2, "Texas Instruments, Inc. - MicroSparc II"},
 119   { 4, 3, "Texas Instruments, Inc. - SuperSparc 51"},
 120   { 4, 4, "Texas Instruments, Inc. - SuperSparc 61"},
 121   { 4, 5, "Texas Instruments, Inc. - unknown"},
 122   { 5, 0, "Matsushita - MN10501"},
 123   { 6, 0, "Philips Corporation - unknown"},
 124   { 7, 0, "Harvest VLSI Design Center, Inc. - unknown"},
 125   /* Gallium arsenide 200MHz, BOOOOGOOOOMIPS!!! */
 126   { 8, 0, "Systems and Processes Engineering Corporation (SPEC)"},
 127   { 9, 0, "UNKNOWN CPU-VENDOR/TYPE"},
 128   { 0xa, 0, "UNKNOWN CPU-VENDOR/TYPE"},
 129   { 0xb, 0, "UNKNOWN CPU-VENDOR/TYPE"},
 130   { 0xc, 0, "UNKNOWN CPU-VENDOR/TYPE"},
 131   { 0xd, 0, "UNKNOWN CPU-VENDOR/TYPE"},
 132   { 0xe, 0, "UNKNOWN CPU-VENDOR/TYPE"},
 133   { 0xf, 0, "UNKNOWN CPU-VENDOR/TYPE"},
 134 };
 135 
 136 #define NSPARCCHIPS  (sizeof(linux_sparc_chips)/sizeof(struct cpu_iu_info))
 137 
 138 char *sparc_cpu_type[NCPUS] = { "cpu-oops", "cpu-oops1", "cpu-oops2", "cpu-oops3" };
 139 char *sparc_fpu_type[NCPUS] = { "fpu-oops", "fpu-oops1", "fpu-oops2", "fpu-oops3" };
 140 
 141 /* various Virtual Address Cache parameters we find at boot time... */
 142 
 143 extern int vac_size, vac_linesize, vac_do_hw_vac_flushes;
 144 extern int vac_entries_per_context, vac_entries_per_segment;
 145 extern int vac_entries_per_page;
 146 
 147 extern int find_vac_size(void);
 148 extern int find_vac_linesize(void);
 149 extern int find_vac_hwflushes(void);
 150 
 151 static inline int find_mmu_num_contexts(int cpu)
     /* [previous][next][first][last][top][bottom][index][help] */
 152 {
 153         return prom_getintdefault(cpu, "mmu-nctx", 0x8);
 154 }
 155 
 156 unsigned int fsr_storage;
 157 
 158 void
 159 probe_cpu(void)
     /* [previous][next][first][last][top][bottom][index][help] */
 160 {
 161   int psr_impl, psr_vers, fpu_vers;
 162   int i, cpuid;
 163 
 164   cpuid = get_cpuid();
 165 
 166   psr_impl = ((get_psr()>>28)&0xf);
 167   psr_vers = ((get_psr()>>24)&0xf);
 168 
 169   fpu_vers = ((get_fsr()>>17)&0x7);
 170 
 171   for(i = 0; i<NSPARCCHIPS; i++)
 172     {
 173       if(linux_sparc_chips[i].psr_impl == psr_impl)
 174         if(linux_sparc_chips[i].psr_vers == psr_vers)
 175           {
 176             sparc_cpu_type[cpuid] = linux_sparc_chips[i].cpu_name;
 177             break;
 178           }
 179     }
 180 
 181   if(i==NSPARCCHIPS)
 182     {
 183       printk("No CPU type! You lose\n");
 184       printk("DEBUG: psr.impl = 0x%x   psr.vers = 0x%x\n", psr_impl, 
 185              psr_vers);
 186       printk("Send this information and the type of SUN and CPU/FPU type you have\n");
 187       printk("to davem@caip.rutgers.edu so that this can be fixed.\n");
 188       printk("halting...\n\r\n");
 189       /* If I don't know about this CPU, I don't want people running on it
 190        * until I do.....
 191        */
 192       halt();
 193     }
 194 
 195   for(i = 0; i<NSPARCFPU; i++)
 196     {
 197       if(linux_sparc_fpu[i].psr_impl == psr_impl)
 198         if(linux_sparc_fpu[i].fp_vers == fpu_vers)
 199           {
 200             sparc_fpu_type[cpuid] = linux_sparc_fpu[i].fp_name;
 201             break;
 202           }
 203     }
 204 
 205   if(i == NSPARCFPU)
 206     {
 207       printk("No FPU type! You don't completely lose though...\n");
 208       printk("DEBUG: psr.impl = 0x%x  fsr.vers = 0x%x\n", psr_impl, fpu_vers);
 209       printk("Send this information and the type of SUN and CPU/FPU type you have\n");
 210       printk("to davem@caip.rutgers.edu so that this can be fixed.\n");
 211       sparc_fpu_type[cpuid] = linux_sparc_fpu[31].fp_name;
 212     }
 213 
 214   printk("cpu%d CPU: %s \n", cpuid, sparc_cpu_type[cpuid]);
 215   printk("cpu%d FPU: %s \n", cpuid, sparc_fpu_type[cpuid]);
 216 
 217   return;
 218 }
 219 
 220 void
 221 probe_vac(void)
     /* [previous][next][first][last][top][bottom][index][help] */
 222 {
 223         unsigned int x,y;
 224 
 225         vac_size = find_vac_size();
 226         vac_linesize = find_vac_linesize();
 227         vac_do_hw_vac_flushes = find_vac_hwflushes();
 228 
 229         /* Calculate various constants that make the cache-flushing code
 230          * mode speedy.
 231          */
 232 
 233         vac_entries_per_segment = vac_entries_per_context = vac_size >> 12;
 234         for(x=0,y=vac_linesize; ((1<<x)<y); x++);
 235         if((1<<x) != vac_linesize) printk("Warning BOGUS VAC linesize 0x%x",
 236                                           vac_size);
 237         vac_entries_per_page = x;
 238 
 239         /* Here we want to 'invalidate' all the software VAC "tags"
 240          * just in case there is garbage in there. Then we enable it.
 241          */
 242 
 243         /* flush flush flush */
 244         for(x=AC_CACHETAGS; x<(AC_CACHETAGS+vac_size); x+=vac_linesize)
 245                 __asm__("sta %%g0, [%0] %1" : : "r" (x), "i" (0x2));
 246         x=enable_vac();
 247         return;
 248 }
 249 
 250 extern int num_segmaps, num_contexts;
 251 
 252 void
 253 probe_mmu(int prom_node_cpu)
     /* [previous][next][first][last][top][bottom][index][help] */
 254 {
 255         int cpuid;
 256 
 257         /* who are we? */
 258         cpuid = get_cpuid();
 259         switch(sparc_cpu_model) {
 260         case sun4:
 261                 break;
 262         case sun4c:
 263                 /* A sun4, sun4c. */
 264                 num_segmaps = prom_getintdefault(prom_node_cpu, "mmu-npmg", 128);
 265                 num_contexts = find_mmu_num_contexts(prom_node_cpu);
 266 
 267                 printk("cpu%d MMU segmaps: %d     MMU contexts: %d\n", cpuid,
 268                        num_segmaps, num_contexts);
 269                 break;
 270         case sun4m:
 271         case sun4d:
 272         case sun4e:
 273                 /* Any Reference MMU derivate should be handled here, hopefuly. */
 274                 num_segmaps = 0;
 275                 num_contexts = find_mmu_num_contexts(prom_node_cpu);
 276                 vac_linesize = prom_getint(prom_node_cpu, "cache-line-size");
 277                 vac_size = (prom_getint(prom_node_cpu, "cache-nlines")*vac_linesize);
 278                 printk("cpu%d MMU contexts: %d\n", cpuid, num_contexts);
 279                 printk("cpu%d CACHE linesize %d total size %d\n", cpuid, vac_linesize,
 280                        vac_size);
 281                 break;
 282         default:
 283                 printk("cpu%d probe_mmu: sparc_cpu_model botch\n", cpuid);
 284                 break;
 285         };
 286 
 287         return;
 288 }
 289 
 290 /* Clock probing, we probe the timers here also. */
 291 /* #define DEBUG_PROBE_CLOCK */
 292 volatile unsigned int foo_limit;
 293 
 294 void
 295 probe_clock(int fchild)
     /* [previous][next][first][last][top][bottom][index][help] */
 296 {
 297   register int node, type;
 298   struct linux_prom_registers clk_reg[2];
 299 
 300   /* This will basically traverse the node-tree of the prom to see
 301    * which timer chip is on this machine.
 302    */
 303 
 304   node = 0;
 305   if(sparc_cpu_model == sun4) {
 306           printk("probe_clock: No SUN4 Clock/Timer support yet...\n");
 307           return;
 308   }
 309   if(sparc_cpu_model == sun4c) node=prom_getchild(prom_root_node);
 310   else
 311           if(sparc_cpu_model == sun4m)
 312                   node=prom_getchild(prom_searchsiblings(prom_getchild(prom_root_node), "obio"));
 313   type = 0;
 314   sp_clock_typ = MSTK_INVALID;
 315   for(;;) {
 316           prom_getstring(node, "model", node_str, sizeof(node_str));
 317           if(strcmp(node_str, "mk48t02") == 0) {
 318                   sp_clock_typ = MSTK48T02;
 319                   if(prom_getproperty(node, "reg", (char *) clk_reg, sizeof(clk_reg)) == -1) {
 320                           printk("probe_clock: FAILED!\n");
 321                           halt();
 322                   }
 323                   prom_apply_obio_ranges(clk_reg, 1);
 324                   /* Map the clock register io area read-only */
 325                   mstk48t02_regs = (struct mostek48t02 *) 
 326                           sparc_alloc_io((void *) clk_reg[0].phys_addr,
 327                                          (void *) 0, sizeof(*mstk48t02_regs),
 328                                          "clock", 0x0, 0x1);
 329                   mstk48t08_regs = 0;  /* To catch weirdness */
 330                   break;
 331           }
 332 
 333           if(strcmp(node_str, "mk48t08") == 0) {
 334                   sp_clock_typ = MSTK48T08;
 335                   if(prom_getproperty(node, "reg", (char *) clk_reg,
 336                                       sizeof(clk_reg)) == -1) {
 337                           printk("probe_clock: FAILED!\n");
 338                           halt();
 339                   }
 340                   prom_apply_obio_ranges(clk_reg, 1);
 341                   /* Map the clock register io area read-only */
 342                   mstk48t08_regs = (struct mostek48t08 *)
 343                           sparc_alloc_io((void *) clk_reg[0].phys_addr,
 344                                          (void *) 0, sizeof(*mstk48t08_regs),
 345                                          "clock", 0x0, 0x1);
 346 
 347                   mstk48t02_regs = &mstk48t08_regs->regs;
 348                   break;
 349           }
 350 
 351           node = prom_getsibling(node);
 352           if(node == 0) {
 353                   printk("Aieee, could not find timer chip type\n");
 354                   return;
 355           }
 356   }
 357 
 358   if(sparc_cpu_model == sun4c) {
 359 
 360   /* Map the Timer chip, this is implemented in hardware inside
 361    * the cache chip on the sun4c.
 362    */
 363   sparc_alloc_io ((void *) SUN4C_TIMER_PHYSADDR, (void *) TIMER_VADDR,
 364                   sizeof (*SUN4C_TIMER_STRUCT), "timer", 0x0, 0x0);
 365 
 366   /* Have the level 10 timer tick at 100HZ.  We don't touch the
 367    * level 14 timer limit since we are letting the prom handle
 368    * them until we have a real console driver so L1-A works.
 369    */
 370   SUN4C_TIMER_STRUCT->timer_limit10 = (((1000000/HZ) + 1) << 10);
 371   master_l10_limit = &(SUN4C_TIMER_STRUCT->timer_limit10);
 372 
 373   } else {
 374           int reg_count;
 375           struct linux_prom_registers cnt_regs[PROMREG_MAX];
 376           int obio_node, cnt_node;
 377 
 378           cnt_node = 0;
 379           if((obio_node =
 380               prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 ||
 381              (obio_node = prom_getchild (obio_node)) == 0 ||
 382              (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) {
 383                   printk ("Cannot find /obio/counter node\n");
 384                   prom_halt ();
 385           }
 386           reg_count = prom_getproperty(cnt_node, "reg",
 387                                        (void *) cnt_regs, sizeof(cnt_regs));
 388 
 389           reg_count = (reg_count/sizeof(struct linux_prom_registers));
 390 
 391           /* Apply the obio ranges to the timer registers. */
 392           prom_apply_obio_ranges(cnt_regs, reg_count);
 393 
 394           /* Map the per-cpu Counter registers. */
 395           sparc_alloc_io(cnt_regs[0].phys_addr, (void *) TIMER_VADDR,
 396                          PAGE_SIZE*NCPUS, "counters_percpu", cnt_regs[0].which_io, 0x0);
 397 
 398           /* Map the system Counter register. */
 399           sparc_alloc_io(cnt_regs[reg_count-1].phys_addr,
 400                          (void *) TIMER_VADDR+(NCPUS*PAGE_SIZE),
 401                          cnt_regs[reg_count-1].reg_size,
 402                          "counters_system", cnt_regs[reg_count-1].which_io, 0x0);
 403 
 404 
 405           sun4m_timers = (struct sun4m_timer_regs *) TIMER_VADDR;
 406 
 407           foo_limit = (volatile) sun4m_timers->l10_timer_limit;
 408 
 409 /*        printk("Timer register dump:\n"); */
 410 #if 0
 411           printk("cpu0: l14limit %08x l14curcount %08x\n",
 412                  sun4m_timers->cpu_timers[0].l14_timer_limit,
 413                  sun4m_timers->cpu_timers[0].l14_cur_count);
 414 #endif
 415 #if 0
 416           printk("sys: l10limit %08x l10curcount %08x\n",
 417                  sun4m_timers->l10_timer_limit,
 418                  sun4m_timers->l10_cur_count);
 419 #endif
 420 
 421           /* Must set the master pointer first or we will lose badly. */
 422           master_l10_limit =
 423                   &(((struct sun4m_timer_regs *)TIMER_VADDR)->l10_timer_limit);
 424 
 425           ((struct sun4m_timer_regs *)TIMER_VADDR)->l10_timer_limit =
 426                   (((1000000/HZ) + 1) << 10);   /* 0x9c4000 */
 427 
 428           /* We should be getting level 10 interrupts now. */
 429   }
 430 
 431   return;
 432 }
 433 
 434 /* Probe and map in the Auxiliaary I/O register */
 435 void
 436 probe_auxio(void)
     /* [previous][next][first][last][top][bottom][index][help] */
 437 {
 438         int node, auxio_nd;
 439         struct linux_prom_registers auxregs[1];
 440 
 441         node = prom_getchild(prom_root_node);
 442         auxio_nd = prom_searchsiblings(node, "auxiliary-io");
 443         if(!auxio_nd) {
 444                 node = prom_searchsiblings(node, "obio");
 445                 node = prom_getchild(node);
 446                 auxio_nd = prom_searchsiblings(node, "auxio");
 447                 if(!auxio_nd) {
 448                         printk("Cannot find auxio node, cannot continue...\n");
 449                         prom_halt();
 450                 }
 451         }
 452         prom_getproperty(auxio_nd, "reg", (char *) auxregs, sizeof(auxregs));
 453         prom_apply_obio_ranges(auxregs, 0x1);
 454         /* Map the register both read and write */
 455         sparc_alloc_io(auxregs[0].phys_addr, (void *) AUXIO_VADDR,
 456                        auxregs[0].reg_size, "auxilliaryIO", auxregs[0].which_io, 0x0);
 457         printk("Mapped AUXIO at paddr %08lx vaddr %08lx\n",
 458                (unsigned long) auxregs[0].phys_addr,
 459                (unsigned long) AUXIO_VADDR);
 460         return;
 461 }
 462 
 463 extern unsigned long probe_memory(void);
 464 extern struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
 465 unsigned int phys_bytes_of_ram, end_of_phys_memory;
 466 extern unsigned long probe_sbus(int, unsigned long);
 467 extern void probe_mbus(void);
 468 
 469 /* #define DEBUG_PROBE_DEVICES */
 470 struct prom_cpuinfo linux_cpus[NCPUS];
 471 int linux_num_cpus;
 472 
 473 unsigned long
 474 probe_devices(unsigned long mem_start)
     /* [previous][next][first][last][top][bottom][index][help] */
 475 {
 476   int nd, i, prom_node_cpu, thismid;
 477   int cpu_nds[NCPUS];  /* One node for each cpu */
 478   int cpu_ctr = 0;
 479 
 480   prom_getstring(prom_root_node, "device_type", node_str, sizeof(node_str));
 481   if(strcmp(node_str, "cpu") == 0) {
 482     cpu_nds[0] = prom_root_node;
 483     cpu_ctr++;
 484   } else {
 485     int scan;
 486     scan = prom_getchild(prom_root_node);
 487     nd = 0;
 488     while((scan = prom_getsibling(scan)) != 0) {
 489       prom_getstring(scan, "device_type", node_str, sizeof(node_str));
 490       if(strcmp(node_str, "cpu") == 0) {
 491               cpu_nds[cpu_ctr] = scan;
 492               linux_cpus[cpu_ctr].prom_node = scan;
 493               prom_getproperty(scan, "mid", (char *) &thismid, sizeof(thismid));
 494               linux_cpus[cpu_ctr].mid = thismid;
 495               cpu_ctr++;
 496       }
 497     };
 498     if(cpu_ctr == 0) {
 499       printk("No CPU nodes found, cannot continue.\n");
 500       /* Probably a sun4d or sun4e, Sun is trying to trick us ;-) */
 501       halt();
 502     }
 503     printk("Found %d CPU prom device tree node(s).\n", cpu_ctr);
 504   };
 505   prom_node_cpu = cpu_nds[0];
 506 
 507   linux_num_cpus = cpu_ctr;
 508   for(i=0; i<cpu_ctr; i++) {
 509           prom_getstring(cpu_nds[i], "name", node_str, sizeof(node_str));
 510           printk("cpu%d: %s \n", i, node_str);
 511   }
 512 
 513 /* Ok, here will go a call to each specific device probe. We can
 514  * call these now that we have the 'root' node and the child of
 515  * this node to send to the routines. ORDER IS IMPORTANT!
 516  */
 517 
 518   probe_cpu();
 519   probe_auxio();
 520   if(sparc_cpu_model == sun4c) probe_vac();
 521   if(sparc_cpu_model != sun4c) probe_mbus(); /* Are MBUS's relevant on sun4c's? */
 522 
 523   mem_start = probe_sbus(prom_getchild(prom_root_node), mem_start);
 524 
 525   return mem_start;
 526 }

/* [previous][next][first][last][top][bottom][index][help] */