1 /* $Id: pgtsrmmu.h,v 1.9 1995/11/25 02:32:24 davem Exp $
2 * pgtsrmmu.h: SRMMU page table defines and code.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 */
6
7 #include <asm/page.h> /* just in case */
8
9 #ifndef _SPARC_PGTSRMMU_H
10 #define _SPARC_PGTSRMMU_H
11
12 #define SRMMU_PAGE_TABLE_SIZE 0x100 /* 64 entries, 4 bytes a piece */
13 #define SRMMU_PMD_TABLE_SIZE 0x100 /* 64 entries, 4 bytes a piece */
14 #define SRMMU_PGD_TABLE_SIZE 0x400 /* 256 entries, 4 bytes a piece */
15
16 /* PMD_SHIFT determines the size of the area a second-level page table can map */
17 #define SRMMU_PMD_SHIFT 18
18 #define SRMMU_PMD_SIZE (1UL << SRMMU_PMD_SHIFT)
19 #define SRMMU_PMD_MASK (~(SRMMU_PMD_SIZE-1))
20 #define SRMMU_PMD_ALIGN(addr) (((addr)+SRMMU_PMD_SIZE-1)&SRMMU_PMD_MASK)
21
22 /* PGDIR_SHIFT determines what a third-level page table entry can map */
23 #define SRMMU_PGDIR_SHIFT 24
24 #define SRMMU_PGDIR_SIZE (1UL << SRMMU_PGDIR_SHIFT)
25 #define SRMMU_PGDIR_MASK (~(SRMMU_PGDIR_SIZE-1))
26 #define SRMMU_PGDIR_ALIGN(addr) (((addr)+SRMMU_PGDIR_SIZE-1)&SRMMU_PGDIR_MASK)
27
28 /*
29 * Three-level on SRMMU.
30 */
31
32 #define SRMMU_PTRS_PER_PTE 64
33 #define SRMMU_PTRS_PER_PMD 64
34 #define SRMMU_PTRS_PER_PGD 256
35
36 /* Just any arbitrary offset to the start of the vmalloc VM area: the
37 * current 8MB value just means that there will be a 8MB "hole" after the
38 * physical memory until the kernel virtual memory starts. That means that
39 * any out-of-bounds memory accesses will hopefully be caught.
40 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
41 * area for the same reason. ;)
42 */
43 #define SRMMU_VMALLOC_OFFSET (8*1024*1024)
44 #define SRMMU_VMALLOC_START ((high_memory + SRMMU_VMALLOC_OFFSET) & ~(SRMMU_VMALLOC_OFFSET-1))
45
46 /*
47 * Sparc SRMMU page table fields.
48 */
49
50 #define _SRMMU_PAGE_VALID (SRMMU_ET_PTE)
51 #define _SRMMU_PMD_VALID (SRMMU_ET_PTD)
52 #define _SRMMU_PGD_VALID (SRMMU_ET_PTD)
53 #define _SRMMU_PAGE_WRITE_USR (SRMMU_ACC_US_RDWR)
54 #define _SRMMU_PAGE_WRITE_KERN (SRMMU_ACC_S_RDWR)
55 #define _SRMMU_PAGE_EXEC (SRMMU_ACC_US_RDEXEC)
56 #define _SRMMU_PAGE_RDONLY (SRMMU_ACC_US_RDONLY)
57 #define _SRMMU_PAGE_NOREAD (SRMMU_ACC_U_ACCDENIED)
58 #define _SRMMU_PAGE_NOCACHE (~SRMMU_PTE_C_MASK)
59 #define _SRMMU_PAGE_PRIV (SRMMU_ACC_S_RDWREXEC)
60 #define _SRMMU_PAGE_REF (SRMMU_PTE_R_MASK)
61 #define _SRMMU_PAGE_DIRTY (SRMMU_PTE_M_MASK)
62 #define _SRMMU_PAGE_COW (SRMMU_ACC_U_RDONLY)
63 #define _SRMMU_PAGE_UNCOW (SRMMU_ACC_US_RDWR)
64
65 /* We want the swapper not to swap out page tables, thus dirty and writable
66 * so that the kernel can change the entries as needed. Also valid for
67 * obvious reasons.
68 */
69 #define _SRMMU_PAGE_TABLE (_SRMMU_PAGE_VALID | _SRMMU_PAGE_WRITE_KERN | _SRMMU_PAGE_REF | _SRMMU_PAGE_DIRTY)
70 #define _SRMMU_PAGE_CHG_MASK (_SRMMU_PAGE_REF | _SRMMU_PAGE_DIRTY | SRMMU_ET_PTE)
71 #define _SRMMU_PMD_CHG_MASK (SRMMU_ET_PTD)
72 #define _SRMMU_PGD_CHG_MASK (SRMMU_ET_PTD)
73
74 #define SRMMU_PAGE_NONE __pgprot(_SRMMU_PAGE_VALID | _SRMMU_PAGE_REF)
75 #define SRMMU_PAGE_SHARED __pgprot(_SRMMU_PAGE_VALID | _SRMMU_PAGE_WRITE_USR | _SRMMU_PAGE_REF)
76 #define SRMMU_PAGE_COPY __pgprot(_SRMMU_PAGE_VALID | _SRMMU_PAGE_REF | _SRMMU_PAGE_COW)
77 #define SRMMU_PAGE_READONLY __pgprot(_SRMMU_PAGE_VALID | _SRMMU_PAGE_REF | SRMMU_ACC_US_RDONLY)
78 #define SRMMU_PAGE_KERNEL __pgprot(_SRMMU_PAGE_VALID | _SRMMU_PAGE_PRIV | SRMMU_PTE_C_MASK)
79 #define SRMMU_PAGE_INVALID __pgprot(SRMMU_ET_INVALID)
80
81 #define _SRMMU_PAGE_NORMAL(x) __pgprot(_SRMMU_PAGE_VALID | _SRMMU_PAGE_REF | (x))
82
83 /* SRMMU Register addresses */
84 #define SRMMU_CTRL_REG 0x00000000
85 #define SRMMU_CTXTBL_PTR 0x00000100
86 #define SRMMU_CTX_REG 0x00000200
87 #define SRMMU_FAULT_STATUS 0x00000300
88 #define SRMMU_FAULT_ADDR 0x00000400
89 #define SRMMU_AFAULT_STATUS 0x00000500
90 #define SRMMU_AFAULT_ADDR 0x00000600
91
92 /* The SRMMU control register fields:
93 * -------------------------------------------------------------------
94 * | IMPL | VERS | SysControl | PSO | Resv | No Fault | Enable |
95 * -------------------------------------------------------------------
96 * 31 28 27 24 23 8 7 6 2 1 0
97 *
98 * IMPL: Indicates the implementation of this SRMMU, read-only.
99 * VERS: The version of this implementation, again read-only.
100 * SysControl: This is an implementation specific field, the SRMMU
101 * specification does not define anything for this field.
102 * PSO: This determines whether the memory model as seen by the CPU
103 * is Partial Store Order (PSO=1) or Total Store Ordering (PSO=0).
104 * Resv: Don't touch these bits ;)
105 * No Fault: If zero, any fault acts as expected where the fault status
106 * and address registers are updated and a trap hits the CPU.
107 * When this bit is one, on any fault other than in ASI 9, the
108 * MMU updates the status and address fault registers but does
109 * not signal the CPU with a trap. This is useful to beat
110 * race conditions in low-level code when we have to throw
111 * a register window onto the stack in a spill/fill handler
112 * on multiprocessors.
113 * Enable: If one the MMU is doing translations, if zero the addresses
114 * given to the bus are pure physical.
115 */
116
117 #define SRMMU_CTREG_IMPL_MASK 0xf0000000
118 #define SRMMU_CTREG_IMPL_SHIFT 28
119 #define SRMMU_CTREG_VERS_MASK 0x0f000000
120 #define SRMMU_CTREG_VERS_SHIFT 24
121 #define SRMMU_CTREG_SYSCNTRL_MASK 0x00ffff00
122 #define SRMMU_CTREG_SYSCNTRL_SHIFT 8
123 #define SRMMU_CTREG_PSO_MASK 0x00000080
124 #define SRMMU_CTREG_PSO_SHIFT 7
125 #define SRMMU_CTREG_RESV_MASK 0x0000007c
126 #define SRMMU_CTREG_RESV_SHIFT 2
127 #define SRMMU_CTREG_NOFAULT_MASK 0x00000002
128 #define SRMMU_CTREG_NOFAULT_SHIFT 1
129 #define SRMMU_CTREG_ENABLE_MASK 0x00000001
130 #define SRMMU_CTREG_ENABLE_SHIFT 0
131
132 /* Get the MMU control register */
133 extern inline unsigned int srmmu_get_mmureg(void)
/* ![[previous]](../icons/n_left.png)
![[next]](../icons/right.png)
![[first]](../icons/n_first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
134 {
135 register unsigned int retval;
136 __asm__ __volatile__("lda [%%g0] %1, %0\n\t" :
137 "=r" (retval) :
138 "i" (ASI_M_MMUREGS));
139 return retval;
140 }
141
142 /* Set the MMU control register */
143 extern inline void srmmu_set_mmureg(unsigned long regval)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
144 {
145 __asm__ __volatile__("sta %0, [%%g0] %1\n\t" : :
146 "r" (regval), "i" (ASI_M_MMUREGS) : "memory");
147
148 return;
149 }
150
151 /* The SRMMU Context Table Pointer Register:
152 * ---------------------------------
153 * | Context Table Pointer | Resv |
154 * ---------------------------------
155 * 31 2 1 0
156 *
157 * This is where the MMU goes to in physical RAM to fetch the
158 * elements in the context table. The non-Resv bits of this
159 * address appear in bits 6-35 of the physical bus during miss
160 * processing, then indexed by the value in the Context Register.
161 * This table must be aligned on a boundary equal to the size of
162 * the table, we provide a nice macro for doing this based upon
163 * the significant bits in the context register.
164 */
165 #define SRMMU_CTP_ADDR_MASK 0xfffffffc
166 #define SRMMU_CTP_ADDR_PADDR_SHIFT 0x4
167 #define SRMMU_CTP_RESV_MASK 0x00000003
168
169 #define SRMMU_SIGBITS_TO_ALIGNMENT(numbits) ((1 << (numbits + 2)))
170
171
172 /* Set the address of the context table. You pass this routine
173 * the physical address, we do the magic shifting for you.
174 */
175 extern inline void srmmu_set_ctable_ptr(unsigned long paddr)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
176 {
177 unsigned long ctp;
178
179 ctp = (paddr >> SRMMU_CTP_ADDR_PADDR_SHIFT);
180 ctp &= SRMMU_CTP_ADDR_MASK;
181
182 __asm__ __volatile__("sta %0, [%1] %2\n\t" : :
183 "r" (ctp), "r" (SRMMU_CTXTBL_PTR),
184 "i" (ASI_M_MMUREGS) :
185 "memory");
186 return;
187 }
188
189
190 /* Get the address of the context table. We return the physical
191 * address of the table, again we do the shifting here.
192 */
193 extern inline unsigned long srmmu_get_ctable_ptr(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
194 {
195 register unsigned int retval;
196
197 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
198 "=r" (retval) :
199 "r" (SRMMU_CTXTBL_PTR),
200 "i" (ASI_M_MMUREGS));
201
202 retval &= SRMMU_CTP_ADDR_MASK;
203 retval = (retval << SRMMU_CTP_ADDR_PADDR_SHIFT);
204 return retval;
205 }
206
207 /* Set the context on an SRMMU */
208 extern inline void srmmu_set_context(int context)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
209 {
210 __asm__ __volatile__("sta %0, [%1] %2\n\t" : :
211 "r" (context), "r" (SRMMU_CTX_REG),
212 "i" (ASI_M_MMUREGS) : "memory");
213 return;
214 }
215
216 /* Get the context on an SRMMU */
217 extern inline int srmmu_get_context(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
218 {
219 register int retval;
220 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
221 "=r" (retval) :
222 "r" (SRMMU_CTX_REG),
223 "i" (ASI_M_MMUREGS));
224 return retval;
225 }
226
227 /* SRMMU diagnostic register:
228 * --------------------------------------------------------
229 * | Virtual Address | PDC entry | DiagReg | Resv |
230 * --------------------------------------------------------
231 * 31 12 11 4 3 2 1 0
232 *
233 * An SRMMU implementation has the choice of providing this register
234 * and I don't know much about it.
235 */
236
237 #define SRMMU_DIAG_VADDR_MASK 0xfffff000
238 #define SRMMU_DIAG_PDC_MASK 0x00000ff0
239 #define SRMMU_DIAG_REG_MASK 0x0000000c
240 #define SRMMU_DIAG_RESV_MASK 0x00000003
241
242 /* SRMMU Fault Status Register:
243 * -----------------------------------------------------------
244 * | Reserved | EBE | L | AT | FT | FAV | OW |
245 * -----------------------------------------------------------
246 * 31 18 17 10 9 8 7 5 4 2 1 0
247 *
248 * WARNING!!! On certain VERY BROKEN Viking Sun4d modules this register
249 * is complete TOAST! During a fault you cannot trust the values
250 * contained in this register, you must calculate them yourself
251 * by first using the trap program counter to decode the
252 * instruction the code tried to execute (ie. load or store) and
253 * the address they tried to access. I think the Fault Virtual
254 * Address register may be ok on these chips, but who knows. Grrr.
255 *
256 * Reserved: These bits must be zero.
257 * EBE: External bus error bits, implementation dependant (at least
258 * we know what the bits mean on sun4d Viking modules) ;)
259 * L: The level in tree traversal at which the fault occured. The
260 * values are... 0 = context table
261 * 1 = level-1 page table
262 * 2 = level-2 page table
263 * 3 = level-3 page table
264 * AT: Access type field. This is decoded as follows...
265 * 0 -- Load from user data space
266 * 1 -- Load from supervisor data space
267 * 2 -- Read/Execute from user instruction space
268 * 3 -- Read/Execute from supervisor instruction space
269 * 4 -- Store to user data space
270 * 5 -- Store to supervisor data space
271 * 6 -- Store to user instruction space
272 * 7 -- Store to supervisor instruction space (emacs does this)
273 * On the Viking -- TOAST!
274 * FT: This is the fault type field. It is used to determine what was
275 * wrong in the attempted translation. It can be one of...
276 * 0 -- None
277 * 1 -- Invalid address error
278 * 2 -- Protection violation error
279 * 3 -- Priviledge violation error
280 * 4 -- Translation error (your tables are fucked up)
281 * 5 -- Bus access error (you lose)
282 * 6 -- Internal error (might as well have a Viking)
283 * 7 -- Reserved (don't touch)
284 * FAV: Fault Address Valid bit. When set to one the fault address
285 * register contents are valid. It need not be valid for text
286 * faults as the trapped PC tells us this anyway.
287 * OW: The Overwrite Bit, if set to one, this register has been
288 * written to more than once by the hardware since software did
289 * a read. This mean multiple faults have occurred and you have
290 * to a manual page table tree traversal to continue the handling
291 * of the first fault. And on the Viking module....
292 *
293 * The Fault Address Register is just a 32-bit register representing the
294 * virtual address which caused the fault. It's validity is determined
295 * by the following equation:
296 * if(module==VIKING || FSR.FAV==0) forget_it();
297 * It's ok for the FAV to be invalid for a text fault because we can
298 * use the trapped program counter, however for a data fault we are SOL.
299 * I'll probably have to write a workaround for this situation too ;-(
300 */
301
302 #define SRMMU_FSR_RESV_MASK 0xfffc0000 /* Reserved bits */
303 #define SRMMU_FSR_EBE_MASK 0x0003fc00 /* External Bus Error bits */
304 #define SRMMU_FSR_EBE_BERR 0x00000400 /* Bus Error */
305 #define SRMMU_FSR_EBE_BTIMEO 0x00000800 /* Bus Time Out */
306 #define SRMMU_FSR_EBE_UNCOR 0x00001000 /* Uncorrectable Error */
307 #define SRMMU_FSR_EBE_UNDEF 0x00002000 /* Undefined Error */
308 #define SRMMU_FSR_EBE_PARITY 0x00004000 /* Parity error */
309 #define SRMMU_FSR_EBE_TPARITY 0x00006000 /* Tsunami parity error */
310 #define SRMMU_FSR_EBE_SBUF 0x00008000 /* Store Buffer error */
311 #define SRMMU_FSR_EBE_CSA 0x00010000 /* Control space access error (bad ASI) */
312 #define SRMMU_FSR_EBE_EMRT 0x00020000 /* Viking Emergency Response Team */
313 #define SRMMU_FSR_L_MASK 0x00000300 /* Fault level bits */
314 #define SRMMU_FSR_L_CTABLE 0x00000000 /* Context table level flt/err */
315 #define SRMMU_FSR_L_ONE 0x00000100 /* Level1 ptable flt/err */
316 #define SRMMU_FSR_L_TWO 0x00000200 /* Level2 ptable flt/err */
317 #define SRMMU_FSR_L_THREE 0x00000300 /* Level3 ptable flt/err */
318 #define SRMMU_FSR_AT_MASK 0x000000e0 /* Access Type bits */
319 #define SRMMU_FSR_AT_LUD 0x00000000 /* Load from User Data space */
320 #define SRMMU_FSR_AT_LSD 0x00000020 /* What I'll need after writing this code */
321 #define SRMMU_FSR_AT_RXUI 0x00000040 /* Read/Execute from user text */
322 #define SRMMU_FSR_AT_RXSI 0x00000060 /* Read/Execute from supv text */
323 #define SRMMU_FSR_AT_SUD 0x00000080 /* Store to user data space */
324 #define SRMMU_FSR_AT_SSD 0x000000a0 /* Store to supv data space */
325 #define SRMMU_FSR_AT_SUI 0x000000c0 /* Store to user text */
326 #define SRMMU_FSR_AT_SSI 0x000000e0 /* Store to supv text */
327 #define SRMMU_FSR_FT_MASK 0x0000001c /* Fault Type bits */
328 #define SRMMU_FSR_FT_NONE 0x00000000 /* No fault occurred */
329 #define SRMMU_FSR_FT_IADDR 0x00000002 /* Invalid address */
330 #define SRMMU_FSR_FT_PROT 0x00000004 /* Protection violation */
331 #define SRMMU_FSR_FT_PRIV 0x00000008 /* Privilege violation */
332 #define SRMMU_FSR_FT_TRANS 0x0000000a /* Translation error */
333 #define SRMMU_FSR_FT_BACC 0x0000000c /* Bus Access error */
334 #define SRMMU_FSR_FT_IACC 0x0000000e /* Internal error */
335 #define SRMMU_FSR_FT_RESV 0x00000010 /* Reserved, should not get this */
336 #define SRMMU_FSR_FAV_MASK 0x00000002 /* Fault Address Valid bits */
337 #define SRMMU_FSR_OW_MASK 0x00000001 /* SFSR OverWritten bits */
338
339 /* Read the Fault Status Register on the SRMMU */
340 extern inline unsigned int srmmu_get_fstatus(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
341 {
342 register unsigned int retval;
343
344 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
345 "=r" (retval) :
346 "r" (SRMMU_FAULT_STATUS), "i" (ASI_M_MMUREGS));
347 return retval;
348 }
349
350 /* Read the Fault Address Register on the SRMMU */
351 extern inline unsigned int srmmu_get_faddr(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
352 {
353 register unsigned int retval;
354
355 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
356 "=r" (retval) :
357 "r" (SRMMU_FAULT_ADDR), "i" (ASI_M_MMUREGS));
358 return retval;
359 }
360
361 /* SRMMU Asynchronous Fault Status Register:
362 * -----------------------------------------
363 * | RESERVED |UCE|BTO|BERR|RSV|HFADDR|AFO|
364 * -----------------------------------------
365 * 31 13 12 11 10 9-8 7-4 0
366 *
367 * UCE: UnCorrectable Error
368 * BTO: Bus TimeOut
369 * BERR: Genreic Bus Error
370 * HFADDR: High 4 bits of the faulting address
371 * AFO: Asynchronous Fault Occurred
372 */
373 #define SRMMU_AFSR_RESVMASK 0xffffe000
374 #define SRMMU_AFSR_UCE 0x00001000
375 #define SRMMU_AFSR_BTO 0x00000800
376 #define SRMMU_AFSR_BERR 0x00000400
377 #define SRMMU_AFSR_HFADDR 0x000000f0
378 #define SRMMU_AFSR_AFO 0x00000001
379
380 /* Read the asynchronous fault register */
381 extern inline unsigned int srmmu_get_afstatus(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
382 {
383 register unsigned int retval;
384
385 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
386 "=r" (retval) :
387 "r" (SRMMU_AFAULT_STATUS), "i" (ASI_M_MMUREGS));
388 return retval;
389 }
390
391 /* Read the Asynchronous Fault Address Register on the SRMMU */
392 extern inline unsigned int srmmu_get_afaddr(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
393 {
394 register unsigned int retval;
395
396 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
397 "=r" (retval) :
398 "r" (SRMMU_AFAULT_ADDR), "i" (ASI_M_MMUREGS));
399 return retval;
400 }
401
402
403 /* Flush the entire TLB cache on the SRMMU. */
404 extern inline void srmmu_flush_whole_tlb(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
405 {
406 __asm__ __volatile__("sta %%g0, [%0] %1\n\t": :
407 "r" (0x400), /* Flush entire TLB!! */
408 "i" (ASI_M_FLUSH_PROBE) : "memory");
409
410 return;
411 }
412
413 /* Probe for an entry in the page-tables of the SRMMU. */
414 extern inline unsigned long srmmu_hwprobe(unsigned long vaddr)
/* ![[previous]](../icons/left.png)
![[next]](../icons/n_right.png)
![[first]](../icons/first.png)
![[last]](../icons/n_last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
415 {
416 unsigned long retval;
417
418 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
419 "=r" (retval) :
420 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
421
422 return retval;
423 }
424
425 #endif /* !(_SPARC_PGTSRMMU_H) */