1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <Alan.Cox@linux.org>
10 *
11 * Fixes:
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 */
14
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/ip.h>
20 #include <linux/icmp.h>
21 #include <linux/netdevice.h>
22 #include <net/sock.h>
23 #include <net/ip.h>
24 #include <net/icmp.h>
25 #include <linux/tcp.h>
26 #include <linux/udp.h>
27 #include <linux/firewall.h>
28 #include <linux/ip_fw.h>
29 #include <net/checksum.h>
30
31 /*
32 * Fragment cache limits. We will commit 256K at one time. Should we
33 * cross that limit we will prune down to 192K. This should cope with
34 * even the most extreme cases without allowing an attacker to measurably
35 * harm machine performance.
36 */
37
38 #define IPFRAG_HIGH_THRESH (256*1024)
39 #define IPFRAG_LOW_THRESH (192*1024)
40
41 /*
42 * This fragment handler is a bit of a heap. On the other hand it works quite
43 * happily and handles things quite well.
44 */
45
46 static struct ipq *ipqueue = NULL; /* IP fragment queue */
47
48 unsigned long ip_frag_mem = 0; /* Memory used for fragments */
49
50 /*
51 * Memory Tracking Functions
52 */
53
54 extern __inline__ void frag_kfree_skb(struct sk_buff *skb, int type)
/* ![[previous]](../icons/n_left.png)
![[next]](../icons/right.png)
![[first]](../icons/n_first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
55 {
56 unsigned long flags;
57 save_flags(flags);
58 cli();
59 ip_frag_mem-=skb->truesize;
60 restore_flags(flags);
61 kfree_skb(skb,type);
62 }
63
64 extern __inline__ void frag_kfree_s(void *ptr, int len)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
65 {
66 unsigned long flags;
67 save_flags(flags);
68 cli();
69 ip_frag_mem-=len;
70 restore_flags(flags);
71 kfree_s(ptr,len);
72 }
73
74 extern __inline__ void *frag_kmalloc(int size, int pri)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
75 {
76 unsigned long flags;
77 void *vp=kmalloc(size,pri);
78 if(!vp)
79 return NULL;
80 save_flags(flags);
81 cli();
82 ip_frag_mem+=size;
83 restore_flags(flags);
84 return vp;
85 }
86
87 /*
88 * Create a new fragment entry.
89 */
90
91 static struct ipfrag *ip_frag_create(int offset, int end, struct sk_buff *skb, unsigned char *ptr)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
92 {
93 struct ipfrag *fp;
94 unsigned long flags;
95
96 fp = (struct ipfrag *) frag_kmalloc(sizeof(struct ipfrag), GFP_ATOMIC);
97 if (fp == NULL)
98 {
99 NETDEBUG(printk("IP: frag_create: no memory left !\n"));
100 return(NULL);
101 }
102 memset(fp, 0, sizeof(struct ipfrag));
103
104 /* Fill in the structure. */
105 fp->offset = offset;
106 fp->end = end;
107 fp->len = end - offset;
108 fp->skb = skb;
109 fp->ptr = ptr;
110
111 /*
112 * Charge for the SKB as well.
113 */
114
115 save_flags(flags);
116 cli();
117 ip_frag_mem+=skb->truesize;
118 restore_flags(flags);
119
120 return(fp);
121 }
122
123
124 /*
125 * Find the correct entry in the "incomplete datagrams" queue for
126 * this IP datagram, and return the queue entry address if found.
127 */
128
129 static struct ipq *ip_find(struct iphdr *iph)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
130 {
131 struct ipq *qp;
132 struct ipq *qplast;
133
134 cli();
135 qplast = NULL;
136 for(qp = ipqueue; qp != NULL; qplast = qp, qp = qp->next)
137 {
138 if (iph->id== qp->iph->id && iph->saddr == qp->iph->saddr &&
139 iph->daddr == qp->iph->daddr && iph->protocol == qp->iph->protocol)
140 {
141 del_timer(&qp->timer); /* So it doesn't vanish on us. The timer will be reset anyway */
142 sti();
143 return(qp);
144 }
145 }
146 sti();
147 return(NULL);
148 }
149
150
151 /*
152 * Remove an entry from the "incomplete datagrams" queue, either
153 * because we completed, reassembled and processed it, or because
154 * it timed out.
155 */
156
157 static void ip_free(struct ipq *qp)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
158 {
159 struct ipfrag *fp;
160 struct ipfrag *xp;
161
162 /*
163 * Stop the timer for this entry.
164 */
165
166 del_timer(&qp->timer);
167
168 /* Remove this entry from the "incomplete datagrams" queue. */
169 cli();
170 if (qp->prev == NULL)
171 {
172 ipqueue = qp->next;
173 if (ipqueue != NULL)
174 ipqueue->prev = NULL;
175 }
176 else
177 {
178 qp->prev->next = qp->next;
179 if (qp->next != NULL)
180 qp->next->prev = qp->prev;
181 }
182
183 /* Release all fragment data. */
184
185 fp = qp->fragments;
186 while (fp != NULL)
187 {
188 xp = fp->next;
189 IS_SKB(fp->skb);
190 frag_kfree_skb(fp->skb,FREE_READ);
191 frag_kfree_s(fp, sizeof(struct ipfrag));
192 fp = xp;
193 }
194
195 /* Release the IP header. */
196 frag_kfree_s(qp->iph, 64 + 8);
197
198 /* Finally, release the queue descriptor itself. */
199 frag_kfree_s(qp, sizeof(struct ipq));
200 sti();
201 }
202
203
204 /*
205 * Oops- a fragment queue timed out. Kill it and send an ICMP reply.
206 */
207
208 static void ip_expire(unsigned long arg)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
209 {
210 struct ipq *qp;
211
212 qp = (struct ipq *)arg;
213
214 /*
215 * Send an ICMP "Fragment Reassembly Timeout" message.
216 */
217
218 ip_statistics.IpReasmTimeout++;
219 ip_statistics.IpReasmFails++;
220 /* This if is always true... shrug */
221 if(qp->fragments!=NULL)
222 icmp_send(qp->fragments->skb,ICMP_TIME_EXCEEDED,
223 ICMP_EXC_FRAGTIME, 0, qp->dev);
224
225 /*
226 * Nuke the fragment queue.
227 */
228 ip_free(qp);
229 }
230
231 /*
232 * Memory limiting on fragments. Evictor trashes the oldest
233 * fragment queue until we are back under the low threshold
234 */
235
236 static void ip_evictor(void)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
237 {
238 while(ip_frag_mem>IPFRAG_LOW_THRESH)
239 {
240 if(!ipqueue)
241 panic("ip_evictor: memcount");
242 ip_free(ipqueue);
243 }
244 }
245
246 /*
247 * Add an entry to the 'ipq' queue for a newly received IP datagram.
248 * We will (hopefully :-) receive all other fragments of this datagram
249 * in time, so we just create a queue for this datagram, in which we
250 * will insert the received fragments at their respective positions.
251 */
252
253 static struct ipq *ip_create(struct sk_buff *skb, struct iphdr *iph, struct device *dev)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
254 {
255 struct ipq *qp;
256 int ihlen;
257
258 qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC);
259 if (qp == NULL)
260 {
261 NETDEBUG(printk("IP: create: no memory left !\n"));
262 return(NULL);
263 skb->dev = qp->dev;
264 }
265 memset(qp, 0, sizeof(struct ipq));
266
267 /*
268 * Allocate memory for the IP header (plus 8 octets for ICMP).
269 */
270
271 ihlen = iph->ihl * 4;
272 qp->iph = (struct iphdr *) frag_kmalloc(64 + 8, GFP_ATOMIC);
273 if (qp->iph == NULL)
274 {
275 NETDEBUG(printk("IP: create: no memory left !\n"));
276 frag_kfree_s(qp, sizeof(struct ipq));
277 return(NULL);
278 }
279
280 memcpy(qp->iph, iph, ihlen + 8);
281 qp->len = 0;
282 qp->ihlen = ihlen;
283 qp->fragments = NULL;
284 qp->dev = dev;
285
286 /* Start a timer for this entry. */
287 qp->timer.expires = jiffies + IP_FRAG_TIME; /* about 30 seconds */
288 qp->timer.data = (unsigned long) qp; /* pointer to queue */
289 qp->timer.function = ip_expire; /* expire function */
290 add_timer(&qp->timer);
291
292 /* Add this entry to the queue. */
293 qp->prev = NULL;
294 cli();
295 qp->next = ipqueue;
296 if (qp->next != NULL)
297 qp->next->prev = qp;
298 ipqueue = qp;
299 sti();
300 return(qp);
301 }
302
303
304 /*
305 * See if a fragment queue is complete.
306 */
307
308 static int ip_done(struct ipq *qp)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
309 {
310 struct ipfrag *fp;
311 int offset;
312
313 /* Only possible if we received the final fragment. */
314 if (qp->len == 0)
315 return(0);
316
317 /* Check all fragment offsets to see if they connect. */
318 fp = qp->fragments;
319 offset = 0;
320 while (fp != NULL)
321 {
322 if (fp->offset > offset)
323 return(0); /* fragment(s) missing */
324 offset = fp->end;
325 fp = fp->next;
326 }
327
328 /* All fragments are present. */
329 return(1);
330 }
331
332
333 /*
334 * Build a new IP datagram from all its fragments.
335 *
336 * FIXME: We copy here because we lack an effective way of handling lists
337 * of bits on input. Until the new skb data handling is in I'm not going
338 * to touch this with a bargepole.
339 */
340
341 static struct sk_buff *ip_glue(struct ipq *qp)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
342 {
343 struct sk_buff *skb;
344 struct iphdr *iph;
345 struct ipfrag *fp;
346 unsigned char *ptr;
347 int count, len;
348
349 /*
350 * Allocate a new buffer for the datagram.
351 */
352 len = qp->ihlen + qp->len;
353
354 if ((skb = dev_alloc_skb(len)) == NULL)
355 {
356 ip_statistics.IpReasmFails++;
357 NETDEBUG(printk("IP: queue_glue: no memory for gluing queue %p\n", qp));
358 ip_free(qp);
359 return(NULL);
360 }
361
362 /* Fill in the basic details. */
363 skb_put(skb,len);
364 skb->h.raw = skb->data;
365 skb->free = 1;
366
367 /* Copy the original IP headers into the new buffer. */
368 ptr = (unsigned char *) skb->h.raw;
369 memcpy(ptr, ((unsigned char *) qp->iph), qp->ihlen);
370 ptr += qp->ihlen;
371
372 count = 0;
373
374 /* Copy the data portions of all fragments into the new buffer. */
375 fp = qp->fragments;
376 while(fp != NULL)
377 {
378 if(count+fp->len > skb->len)
379 {
380 NETDEBUG(printk("Invalid fragment list: Fragment over size.\n"));
381 ip_free(qp);
382 frag_kfree_skb(skb,FREE_WRITE);
383 ip_statistics.IpReasmFails++;
384 return NULL;
385 }
386 memcpy((ptr + fp->offset), fp->ptr, fp->len);
387 count += fp->len;
388 fp = fp->next;
389 }
390
391 /* We glued together all fragments, so remove the queue entry. */
392 ip_free(qp);
393
394 /* Done with all fragments. Fixup the new IP header. */
395 iph = skb->h.iph;
396 iph->frag_off = 0;
397 iph->tot_len = htons((iph->ihl * 4) + count);
398 skb->ip_hdr = iph;
399
400 ip_statistics.IpReasmOKs++;
401 return(skb);
402 }
403
404
405 /*
406 * Process an incoming IP datagram fragment.
407 */
408
409 struct sk_buff *ip_defrag(struct iphdr *iph, struct sk_buff *skb, struct device *dev)
/* ![[previous]](../icons/left.png)
![[next]](../icons/right.png)
![[first]](../icons/first.png)
![[last]](../icons/last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
410 {
411 struct ipfrag *prev, *next, *tmp;
412 struct ipfrag *tfp;
413 struct ipq *qp;
414 struct sk_buff *skb2;
415 unsigned char *ptr;
416 int flags, offset;
417 int i, ihl, end;
418
419 ip_statistics.IpReasmReqds++;
420
421 /*
422 * Start by cleaning up the memory
423 */
424
425 if(ip_frag_mem>IPFRAG_HIGH_THRESH)
426 ip_evictor();
427 /*
428 * Find the entry of this IP datagram in the "incomplete datagrams" queue.
429 */
430
431 qp = ip_find(iph);
432
433 /* Is this a non-fragmented datagram? */
434 offset = ntohs(iph->frag_off);
435 flags = offset & ~IP_OFFSET;
436 offset &= IP_OFFSET;
437 if (((flags & IP_MF) == 0) && (offset == 0))
438 {
439 if (qp != NULL)
440 ip_free(qp); /* Huh? How could this exist?? */
441 return(skb);
442 }
443
444 offset <<= 3; /* offset is in 8-byte chunks */
445 ihl = iph->ihl * 4;
446
447 /*
448 * If the queue already existed, keep restarting its timer as long
449 * as we still are receiving fragments. Otherwise, create a fresh
450 * queue entry.
451 */
452
453 if (qp != NULL)
454 {
455 /* ANK. If the first fragment is received,
456 * we should remember the correct IP header (with options)
457 */
458 if (offset == 0)
459 {
460 qp->ihlen = ihl;
461 memcpy(qp->iph, iph, ihl+8);
462 }
463 del_timer(&qp->timer);
464 qp->timer.expires = jiffies + IP_FRAG_TIME; /* about 30 seconds */
465 qp->timer.data = (unsigned long) qp; /* pointer to queue */
466 qp->timer.function = ip_expire; /* expire function */
467 add_timer(&qp->timer);
468 }
469 else
470 {
471 /*
472 * If we failed to create it, then discard the frame
473 */
474 if ((qp = ip_create(skb, iph, dev)) == NULL)
475 {
476 skb->sk = NULL;
477 frag_kfree_skb(skb, FREE_READ);
478 ip_statistics.IpReasmFails++;
479 return NULL;
480 }
481 }
482
483 /*
484 * Determine the position of this fragment.
485 */
486
487 end = offset + ntohs(iph->tot_len) - ihl;
488
489 /*
490 * Point into the IP datagram 'data' part.
491 */
492
493 ptr = skb->data + ihl;
494
495 /*
496 * Is this the final fragment?
497 */
498
499 if ((flags & IP_MF) == 0)
500 qp->len = end;
501
502 /*
503 * Find out which fragments are in front and at the back of us
504 * in the chain of fragments so far. We must know where to put
505 * this fragment, right?
506 */
507
508 prev = NULL;
509 for(next = qp->fragments; next != NULL; next = next->next)
510 {
511 if (next->offset > offset)
512 break; /* bingo! */
513 prev = next;
514 }
515
516 /*
517 * We found where to put this one.
518 * Check for overlap with preceding fragment, and, if needed,
519 * align things so that any overlaps are eliminated.
520 */
521 if (prev != NULL && offset < prev->end)
522 {
523 i = prev->end - offset;
524 offset += i; /* ptr into datagram */
525 ptr += i; /* ptr into fragment data */
526 }
527
528 /*
529 * Look for overlap with succeeding segments.
530 * If we can merge fragments, do it.
531 */
532
533 for(tmp=next; tmp != NULL; tmp = tfp)
534 {
535 tfp = tmp->next;
536 if (tmp->offset >= end)
537 break; /* no overlaps at all */
538
539 i = end - next->offset; /* overlap is 'i' bytes */
540 tmp->len -= i; /* so reduce size of */
541 tmp->offset += i; /* next fragment */
542 tmp->ptr += i;
543 /*
544 * If we get a frag size of <= 0, remove it and the packet
545 * that it goes with.
546 */
547 if (tmp->len <= 0)
548 {
549 if (tmp->prev != NULL)
550 tmp->prev->next = tmp->next;
551 else
552 qp->fragments = tmp->next;
553
554 if (tfp->next != NULL)
555 tmp->next->prev = tmp->prev;
556
557 next=tfp; /* We have killed the original next frame */
558
559 frag_kfree_skb(tmp->skb,FREE_READ);
560 frag_kfree_s(tmp, sizeof(struct ipfrag));
561 }
562 }
563
564 /*
565 * Insert this fragment in the chain of fragments.
566 */
567
568 tfp = NULL;
569 tfp = ip_frag_create(offset, end, skb, ptr);
570
571 /*
572 * No memory to save the fragment - so throw the lot
573 */
574
575 if (!tfp)
576 {
577 skb->sk = NULL;
578 frag_kfree_skb(skb, FREE_READ);
579 return NULL;
580 }
581 tfp->prev = prev;
582 tfp->next = next;
583 if (prev != NULL)
584 prev->next = tfp;
585 else
586 qp->fragments = tfp;
587
588 if (next != NULL)
589 next->prev = tfp;
590
591 /*
592 * OK, so we inserted this new fragment into the chain.
593 * Check if we now have a full IP datagram which we can
594 * bump up to the IP layer...
595 */
596
597 if (ip_done(qp))
598 {
599 skb2 = ip_glue(qp); /* glue together the fragments */
600 return(skb2);
601 }
602 return(NULL);
603 }
604
605
606 /*
607 * This IP datagram is too large to be sent in one piece. Break it up into
608 * smaller pieces (each of size equal to the MAC header plus IP header plus
609 * a block of the data of the original IP data part) that will yet fit in a
610 * single device frame, and queue such a frame for sending by calling the
611 * ip_queue_xmit(). Note that this is recursion, and bad things will happen
612 * if this function causes a loop...
613 *
614 * Yes this is inefficient, feel free to submit a quicker one.
615 *
616 */
617
618 void ip_fragment(struct sock *sk, struct sk_buff *skb, struct device *dev, int is_frag)
/* ![[previous]](../icons/left.png)
![[next]](../icons/n_right.png)
![[first]](../icons/first.png)
![[last]](../icons/n_last.png)
![[top]](../icons/top.png)
![[bottom]](../icons/bottom.png)
![[index]](../icons/index.png)
*/
619 {
620 struct iphdr *iph;
621 unsigned char *raw;
622 unsigned char *ptr;
623 struct sk_buff *skb2;
624 int left, mtu, hlen, len;
625 int offset;
626 unsigned long flags;
627
628 /*
629 * Point into the IP datagram header.
630 */
631
632 raw = skb->data;
633 #if 0
634 iph = (struct iphdr *) (raw + dev->hard_header_len);
635 skb->ip_hdr = iph;
636 #else
637 iph = skb->ip_hdr;
638 #endif
639
640 /*
641 * Setup starting values.
642 */
643
644 hlen = iph->ihl * 4;
645 left = ntohs(iph->tot_len) - hlen; /* Space per frame */
646 hlen += dev->hard_header_len; /* Total header size */
647 mtu = (dev->mtu - hlen); /* Size of data space */
648 ptr = (raw + hlen); /* Where to start from */
649
650 /*
651 * Check for any "DF" flag. [DF means do not fragment]
652 */
653
654 if (ntohs(iph->frag_off) & IP_DF)
655 {
656 ip_statistics.IpFragFails++;
657 printk("ip_queue_xmit: frag needed\n");
658 return;
659 }
660
661 /*
662 * The protocol doesn't seem to say what to do in the case that the
663 * frame + options doesn't fit the mtu. As it used to fall down dead
664 * in this case we were fortunate it didn't happen
665 */
666
667 if(mtu<8)
668 {
669 /* It's wrong but it's better than nothing */
670 icmp_send(skb,ICMP_DEST_UNREACH,ICMP_FRAG_NEEDED,dev->mtu, dev);
671 ip_statistics.IpFragFails++;
672 return;
673 }
674
675 /*
676 * Fragment the datagram.
677 */
678
679 /*
680 * The initial offset is 0 for a complete frame. When
681 * fragmenting fragments it's wherever this one starts.
682 */
683
684 if (is_frag & 2)
685 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
686 else
687 offset = 0;
688
689
690 /*
691 * Keep copying data until we run out.
692 */
693
694 while(left > 0)
695 {
696 len = left;
697 /* IF: it doesn't fit, use 'mtu' - the data space left */
698 if (len > mtu)
699 len = mtu;
700 /* IF: we are not sending upto and including the packet end
701 then align the next start on an eight byte boundary */
702 if (len < left)
703 {
704 len/=8;
705 len*=8;
706 }
707 /*
708 * Allocate buffer.
709 */
710
711 if ((skb2 = alloc_skb(len + hlen+15,GFP_ATOMIC)) == NULL)
712 {
713 NETDEBUG(printk("IP: frag: no memory for new fragment!\n"));
714 ip_statistics.IpFragFails++;
715 return;
716 }
717
718 /*
719 * Set up data on packet
720 */
721
722 skb2->arp = skb->arp;
723 if(skb->free==0)
724 printk("IP fragmenter: BUG free!=1 in fragmenter\n");
725 skb2->free = 1;
726 skb_put(skb2,len + hlen);
727 skb2->h.raw=(char *) skb2->data;
728 /*
729 * Charge the memory for the fragment to any owner
730 * it might possess
731 */
732
733 save_flags(flags);
734 if (sk)
735 {
736 cli();
737 sk->wmem_alloc += skb2->truesize;
738 skb2->sk=sk;
739 }
740 restore_flags(flags);
741 skb2->raddr = skb->raddr; /* For rebuild_header - must be here */
742
743 /*
744 * Copy the packet header into the new buffer.
745 */
746
747 memcpy(skb2->h.raw, raw, hlen);
748
749 /*
750 * Copy a block of the IP datagram.
751 */
752 memcpy(skb2->h.raw + hlen, ptr, len);
753 left -= len;
754
755 skb2->h.raw+=dev->hard_header_len;
756
757 /*
758 * Fill in the new header fields.
759 */
760 iph = (struct iphdr *)(skb2->h.raw/*+dev->hard_header_len*/);
761 iph->frag_off = htons((offset >> 3));
762 skb2->ip_hdr = iph;
763
764 /* ANK: dirty, but effective trick. Upgrade options only if
765 * the segment to be fragmented was THE FIRST (otherwise,
766 * options are already fixed) and make it ONCE
767 * on the initial skb, so that all the following fragments
768 * will inherit fixed options.
769 */
770 if (offset == 0)
771 ip_options_fragment(skb);
772
773 /*
774 * Added AC : If we are fragmenting a fragment thats not the
775 * last fragment then keep MF on each bit
776 */
777 if (left > 0 || (is_frag & 1))
778 iph->frag_off |= htons(IP_MF);
779 ptr += len;
780 offset += len;
781
782 /*
783 * Put this fragment into the sending queue.
784 */
785
786 ip_statistics.IpFragCreates++;
787
788 ip_queue_xmit(sk, dev, skb2, 2);
789 }
790 ip_statistics.IpFragOKs++;
791 }
792
793