1 /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $ 2 * linux/include/asm/dma.h: Defines for using and allocating dma channels. 3 * Written by Hennus Bergman, 1992. 4 * High DMA channel support & info by Hannu Savolainen 5 * and John Boyd, Nov. 1992. 6 * 7 * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards 8 * and can only be used for expansion cards. Onboard DMA controller, such 9 * as the R4030 on Jazz boards behave totally different! 10 */ 11 12 #ifndef __ASM_MIPS_DMA_H 13 #define __ASM_MIPS_DMA_H 14 15 #include <asm/io.h> /* need byte IO */ 16 17 18 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER 19 #define dma_outb outb_p 20 #else 21 #define dma_outb outb 22 #endif 23 24 #define dma_inb inb 25 26 /* 27 * NOTES about DMA transfers: 28 * 29 * controller 1: channels 0-3, byte operations, ports 00-1F 30 * controller 2: channels 4-7, word operations, ports C0-DF 31 * 32 * - ALL registers are 8 bits only, regardless of transfer size 33 * - channel 4 is not used - cascades 1 into 2. 34 * - channels 0-3 are byte - addresses/counts are for physical bytes 35 * - channels 5-7 are word - addresses/counts are for physical words 36 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries 37 * - transfer count loaded to registers is 1 less than actual count 38 * - controller 2 offsets are all even (2x offsets for controller 1) 39 * - page registers for 5-7 don't use data bit 0, represent 128K pages 40 * - page registers for 0-3 use bit 0, represent 64K pages 41 * 42 * DMA transfers are limited to the lower 16MB of _physical_ memory. 43 * Note that addresses loaded into registers must be _physical_ addresses, 44 * not logical addresses (which may differ if paging is active). 45 * 46 * Address mapping for channels 0-3: 47 * 48 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) 49 * | ... | | ... | | ... | 50 * | ... | | ... | | ... | 51 * | ... | | ... | | ... | 52 * P7 ... P0 A7 ... A0 A7 ... A0 53 * | Page | Addr MSB | Addr LSB | (DMA registers) 54 * 55 * Address mapping for channels 5-7: 56 * 57 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) 58 * | ... | \ \ ... \ \ \ ... \ \ 59 * | ... | \ \ ... \ \ \ ... \ (not used) 60 * | ... | \ \ ... \ \ \ ... \ 61 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 62 * | Page | Addr MSB | Addr LSB | (DMA registers) 63 * 64 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses 65 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at 66 * the hardware level, so odd-byte transfers aren't possible). 67 * 68 * Transfer count (_not # bytes_) is limited to 64K, represented as actual 69 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, 70 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 71 * 72 */ 73 74 #define MAX_DMA_CHANNELS 8 75 76 /* 77 * The maximum address that we can perform a DMA transfer to on this platform 78 * This describes only the PC style part of the DMA logic like on Deskstations 79 * or Acer PICA but not the much more versatile DMA logic used for the 80 * local devices on Acer PICA or Magnums. 81 */ 82 #define MAX_DMA_ADDRESS 0x1000000 83 84 /* 8237 DMA controllers */ 85 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ 86 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ 87 88 /* DMA controller registers */ 89 #define DMA1_CMD_REG 0x08 /* command register (w) */ 90 #define DMA1_STAT_REG 0x08 /* status register (r) */ 91 #define DMA1_REQ_REG 0x09 /* request register (w) */ 92 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ 93 #define DMA1_MODE_REG 0x0B /* mode register (w) */ 94 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ 95 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ 96 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */ 97 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ 98 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ 99 100 #define DMA2_CMD_REG 0xD0 /* command register (w) */ 101 #define DMA2_STAT_REG 0xD0 /* status register (r) */ 102 #define DMA2_REQ_REG 0xD2 /* request register (w) */ 103 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ 104 #define DMA2_MODE_REG 0xD6 /* mode register (w) */ 105 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ 106 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ 107 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */ 108 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ 109 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ 110 111 #define DMA_ADDR_0 0x00 /* DMA address registers */ 112 #define DMA_ADDR_1 0x02 113 #define DMA_ADDR_2 0x04 114 #define DMA_ADDR_3 0x06 115 #define DMA_ADDR_4 0xC0 116 #define DMA_ADDR_5 0xC4 117 #define DMA_ADDR_6 0xC8 118 #define DMA_ADDR_7 0xCC 119 120 #define DMA_CNT_0 0x01 /* DMA count registers */ 121 #define DMA_CNT_1 0x03 122 #define DMA_CNT_2 0x05 123 #define DMA_CNT_3 0x07 124 #define DMA_CNT_4 0xC2 125 #define DMA_CNT_5 0xC6 126 #define DMA_CNT_6 0xCA 127 #define DMA_CNT_7 0xCE 128 129 #define DMA_PAGE_0 0x87 /* DMA page registers */ 130 #define DMA_PAGE_1 0x83 131 #define DMA_PAGE_2 0x81 132 #define DMA_PAGE_3 0x82 133 #define DMA_PAGE_5 0x8B 134 #define DMA_PAGE_6 0x89 135 #define DMA_PAGE_7 0x8A 136 137 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ 138 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ 139 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ 140 141 /* enable/disable a specific DMA channel */ 142 static __inline__ void enable_dma(unsigned int dmanr) /* */ 143 { 144 if (dmanr<=3) 145 dma_outb(dmanr, DMA1_MASK_REG); 146 else 147 dma_outb(dmanr & 3, DMA2_MASK_REG); 148 } 149 150 static __inline__ void disable_dma(unsigned int dmanr) /* */ 151 { 152 if (dmanr<=3) 153 dma_outb(dmanr | 4, DMA1_MASK_REG); 154 else 155 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); 156 } 157 158 /* Clear the 'DMA Pointer Flip Flop'. 159 * Write 0 for LSB/MSB, 1 for MSB/LSB access. 160 * Use this once to initialize the FF to a known state. 161 * After that, keep track of it. :-) 162 * --- In order to do that, the DMA routines below should --- 163 * --- only be used while interrupts are disabled! --- 164 */ 165 static __inline__ void clear_dma_ff(unsigned int dmanr) /* */ 166 { 167 if (dmanr<=3) 168 dma_outb(0, DMA1_CLEAR_FF_REG); 169 else 170 dma_outb(0, DMA2_CLEAR_FF_REG); 171 } 172 173 /* set mode (above) for a specific DMA channel */ 174 static __inline__ void set_dma_mode(unsigned int dmanr, char mode) /* */ 175 { 176 if (dmanr<=3) 177 dma_outb(mode | dmanr, DMA1_MODE_REG); 178 else 179 dma_outb(mode | (dmanr&3), DMA2_MODE_REG); 180 } 181 182 /* Set only the page register bits of the transfer address. 183 * This is used for successive transfers when we know the contents of 184 * the lower 16 bits of the DMA current address register, but a 64k boundary 185 * may have been crossed. 186 */ 187 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr) /* */ 188 { 189 switch(dmanr) { 190 case 0: 191 dma_outb(pagenr, DMA_PAGE_0); 192 break; 193 case 1: 194 dma_outb(pagenr, DMA_PAGE_1); 195 break; 196 case 2: 197 dma_outb(pagenr, DMA_PAGE_2); 198 break; 199 case 3: 200 dma_outb(pagenr, DMA_PAGE_3); 201 break; 202 case 5: 203 dma_outb(pagenr & 0xfe, DMA_PAGE_5); 204 break; 205 case 6: 206 dma_outb(pagenr & 0xfe, DMA_PAGE_6); 207 break; 208 case 7: 209 dma_outb(pagenr & 0xfe, DMA_PAGE_7); 210 break; 211 } 212 } 213 214 215 /* Set transfer address & page bits for specific DMA channel. 216 * Assumes dma flipflop is clear. 217 */ 218 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) /* */ 219 { 220 set_dma_page(dmanr, a>>16); 221 if (dmanr <= 3) { 222 dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 223 dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 224 } else { 225 dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 226 dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 227 } 228 } 229 230 231 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for 232 * a specific DMA channel. 233 * You must ensure the parameters are valid. 234 * NOTE: from a manual: "the number of transfers is one more 235 * than the initial word count"! This is taken into account. 236 * Assumes dma flip-flop is clear. 237 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. 238 */ 239 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) /* */ 240 { 241 count--; 242 if (dmanr <= 3) { 243 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 244 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 245 } else { 246 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 247 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 248 } 249 } 250 251 252 /* Get DMA residue count. After a DMA transfer, this 253 * should return zero. Reading this while a DMA transfer is 254 * still in progress will return unpredictable results. 255 * If called before the channel has been used, it may return 1. 256 * Otherwise, it returns the number of _bytes_ left to transfer. 257 * 258 * Assumes DMA flip-flop is clear. 259 */ 260 static __inline__ int get_dma_residue(unsigned int dmanr) /* */ 261 { 262 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE 263 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE; 264 265 /* using short to get 16-bit wrap around */ 266 unsigned short count; 267 268 count = 1 + dma_inb(io_port); 269 count += dma_inb(io_port) << 8; 270 271 return (dmanr<=3)? count : (count<<1); 272 } 273 274 275 /* These are in kernel/dma.c: */ 276 extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */ 277 extern void free_dma(unsigned int dmanr); /* release it again */ 278 279 /* 280 * DMA memory allocation - formerly in include/linux/mm.h 281 */ 282 #define __get_dma_pages(priority, order) __get_free_pages((priority),(order), 1) 283 284 #endif /* __ASM_MIPS_DMA_H */